Skip to content

whitecanvas.canvas

Canvas

Source code in whitecanvas\canvas\_base.py
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
class Canvas(CanvasBase):
    _CURRENT_INSTANCE: Canvas | None = None

    def __init__(
        self,
        backend: str | None = None,
        *,
        palette: ColormapType | None = None,
    ):
        self._backend = Backend(backend)
        self._backend_object = self._create_backend_object()
        super().__init__(palette=palette)
        self.__class__._CURRENT_INSTANCE = self

    @classmethod
    def from_backend(
        cls,
        obj: protocols.CanvasProtocol,
        *,
        palette: ColormapType | None = None,
        backend: str | None = None,
    ) -> Self:
        """Create a canvas object from a backend object."""
        with patch_dummy_backend() as name:
            # this patch will delay initialization by "_init_canvas" until the backend
            # objects are created.
            self = cls(backend=name, palette=palette)
        self._backend = Backend(backend)
        self._backend_object = obj
        self._init_canvas()
        return self

    def _update_from_dict(
        self, d: dict[str, Any], backend: Backend | str | None = None
    ) -> Self:
        """Create a Canvas from a dictionary."""
        if "cmap" in d:
            self._color_palette = ColorPalette(d["cmap"])
        self.layers.clear()
        self.layers.extend(construct_layers(d["layers"], backend=backend))
        self.x.update(d.get("x", {}))
        self.y.update(d.get("y", {}))
        self.title.update(d.get("title", {}))
        return self

    def to_dict(self) -> dict[str, Any]:
        """Return a dictionary representation of the canvas."""
        return {
            "type": f"{self.__module__}.{self.__class__.__name__}",
            "palette": self._color_palette,
            "layers": [layer.to_dict() for layer in self.layers],
            "title": self.title.to_dict(),
            "x": self.x.to_dict(),
            "y": self.y.to_dict(),
        }

    def _create_backend_object(self) -> protocols.CanvasProtocol:
        return self._backend.get("Canvas")()

    def _get_backend(self):
        return self._backend

    def _canvas(self) -> protocols.CanvasProtocol:
        return self._backend_object
from_backend(obj, *, palette=None, backend=None) classmethod

Create a canvas object from a backend object.

Source code in whitecanvas\canvas\_base.py
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
@classmethod
def from_backend(
    cls,
    obj: protocols.CanvasProtocol,
    *,
    palette: ColormapType | None = None,
    backend: str | None = None,
) -> Self:
    """Create a canvas object from a backend object."""
    with patch_dummy_backend() as name:
        # this patch will delay initialization by "_init_canvas" until the backend
        # objects are created.
        self = cls(backend=name, palette=palette)
    self._backend = Backend(backend)
    self._backend_object = obj
    self._init_canvas()
    return self
to_dict()

Return a dictionary representation of the canvas.

Source code in whitecanvas\canvas\_base.py
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
def to_dict(self) -> dict[str, Any]:
    """Return a dictionary representation of the canvas."""
    return {
        "type": f"{self.__module__}.{self.__class__.__name__}",
        "palette": self._color_palette,
        "layers": [layer.to_dict() for layer in self.layers],
        "title": self.title.to_dict(),
        "x": self.x.to_dict(),
        "y": self.y.to_dict(),
    }

CanvasBase

Base class for any canvas object.

Source code in whitecanvas\canvas\_base.py
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
class CanvasBase(CanvasNDBase):
    """Base class for any canvas object."""

    dims = Dims()
    overlays = _ll.LayerList()
    mouse = _ns.MouseNamespace()

    def __init__(self, palette: ColormapType | None = None):
        super().__init__(palette)
        self._autoscale_enabled = True
        if not self._get_backend().is_dummy():
            self._init_canvas()

    def _init_canvas(self):
        # default colors and font
        _t = theme.get_theme()
        _ft = _t.font
        self.x.color = _t.foreground_color
        self.y.color = _t.foreground_color
        self.x.label.update(family=_ft.family, color=_ft.color, size=_ft.size)
        self.y.label.update(family=_ft.family, color=_ft.color, size=_ft.size)
        self.title.update(family=_ft.family, color=_ft.color, size=_ft.size)
        self.x.ticks.update(family=_ft.family, color=_ft.color, size=_ft.size)
        self.y.ticks.update(family=_ft.family, color=_ft.color, size=_ft.size)

        # connect layer events
        self.layers.events.inserted.connect(
            self._cb_inserted, unique=True, max_args=None
        )
        self.layers.events.removed.connect(self._cb_removed, unique=True, max_args=None)
        self.layers.events.reordered.connect(
            self._cb_reordered, unique=True, max_args=None
        )
        self.layers.events.connect(self._draw_canvas, unique=True, max_args=None)

        self.overlays.events.inserted.connect(
            self._cb_overlay_inserted, unique=True, max_args=None
        )
        self.overlays.events.removed.connect(
            self._cb_removed, unique=True, max_args=None
        )
        self.overlays.events.connect(self._draw_canvas, unique=True, max_args=None)

        canvas = self._canvas()
        canvas._plt_connect_xlim_changed(self._emit_xlim_changed)
        canvas._plt_connect_ylim_changed(self._emit_ylim_changed)

        if hasattr(canvas, "_plt_canvas_hook"):
            canvas._plt_canvas_hook(self)

    def _install_mouse_events(self):
        canvas = self._canvas()
        canvas._plt_connect_mouse_click(self.mouse.clicked.emit)
        canvas._plt_connect_mouse_click(self.mouse.moved.emit)
        canvas._plt_connect_mouse_drag(self.mouse.moved.emit)
        canvas._plt_connect_mouse_release(self.mouse.moved.emit)
        canvas._plt_connect_mouse_double_click(self.mouse.double_clicked.emit)
        canvas._plt_connect_mouse_double_click(self.mouse.moved.emit)

    def _emit_xlim_changed(self, lim):
        self.x.events.lim.emit(lim)
        self.events.lims.emit(Rect(*lim, *self.y.lim))

    def _emit_ylim_changed(self, lim):
        self.y.events.lim.emit(lim)
        self.events.lims.emit(Rect(*self.x.lim, *lim))

    def _emit_mouse_moved(self, ev):
        """Emit mouse moved event with autoscaling blocked"""
        self.mouse.moved.emit(ev)

    @property
    def native(self) -> Any:
        """Return the native canvas object."""
        return self._canvas()._plt_get_native()

    @property
    def aspect_ratio(self) -> float | None:
        """Aspect ratio of the canvas (None if not locked)."""
        return self._canvas()._plt_get_aspect_ratio()

    @aspect_ratio.setter
    def aspect_ratio(self, ratio: float | None):
        if ratio is not None:
            ratio = float(ratio)
        self._canvas()._plt_set_aspect_ratio(ratio)

    def autoscale(
        self,
        xpad: float | tuple[float, float] | None = None,
        ypad: float | tuple[float, float] | None = None,
    ) -> tuple[float, float, float, float]:
        """
        Autoscale the canvas to fit the contents.

        Parameters
        ----------
        xpad : float or (float, float), optional
            Padding in the x direction.
        ypad : float or (float, float), optional
            Padding in the y direction.
        """
        ar = np.stack([layer.bbox_hint() for layer in self.layers], axis=0)
        xmin = np.min(ar[:, 0])
        xmax = np.max(ar[:, 1])
        ymin = np.min(ar[:, 2])
        ymax = np.max(ar[:, 3])
        x0, x1 = self.x.lim
        y0, y1 = self.y.lim
        if np.isnan(xmin):
            xmin = x0
        if np.isnan(xmax):
            xmax = x1
        if np.isnan(ymin):
            ymin = y0
        if np.isnan(ymax):
            ymax = y1
        if xpad is not None:
            xrange = xmax - xmin
            if is_real_number(xpad):
                dx0 = dx1 = xpad * xrange
            else:
                dx0, dx1 = xpad[0] * xrange, xpad[1] * xrange
            xmin -= dx0
            xmax += dx1
        if ypad is not None:
            yrange = ymax - ymin
            if is_real_number(ypad):
                dy0 = dy1 = ypad * yrange
            else:
                dy0, dy1 = ypad[0] * yrange, ypad[1] * yrange
            ymin -= dy0
            ymax += dy1
        small_diff = 1e-6
        if xmax - xmin < small_diff:
            xmin -= 0.05
            xmax += 0.05
        if ymax - ymin < small_diff:
            ymin -= 0.05
            ymax += 0.05
        self.x.lim = xmin, xmax
        self.y.lim = ymin, ymax
        return xmin, xmax, ymin, ymax

    def install_second_x(self, *, palette: ColormapType | None = None) -> Canvas:
        """Create a twin canvas that has a secondary x-axis and shared y-axis."""
        try:
            new = self._canvas()._plt_twiny()
        except AttributeError:
            raise NotImplementedError(
                f"Backend {self._get_backend()} does not support `install_second_x`."
            ) from None
        canvas = Canvas.from_backend(new, palette=palette, backend=self._get_backend())
        canvas._init_canvas()
        return canvas

    def install_second_y(self, *, palette: ColormapType | None = None) -> Canvas:
        """Create a twin canvas that has a secondary y-axis and shared x-axis."""
        try:
            new = self._canvas()._plt_twinx()
        except AttributeError:
            raise NotImplementedError(
                f"Backend {self._get_backend()} does not support `install_second_y`."
            ) from None
        canvas = Canvas.from_backend(new, palette=palette, backend=self._get_backend())
        canvas._init_canvas()
        return canvas

    @overload
    def install_inset(
        self, left: float, right: float, bottom: float, top: float, *,
        palette: ColormapType | None = None
    ) -> Canvas:  # fmt: skip
        ...

    @overload
    def install_inset(
        self, rect: Rect | tuple[float, float, float, float], /, *,
        palette: ColormapType | None = None
    ) -> Canvas:  # fmt: skip
        ...

    def install_inset(self, *args, palette=None, **kwargs) -> Canvas:
        """
        Install a new canvas pointing to an inset of the current canvas.

        >>> canvas.install_inset(left=0.1, right=0.9, bottom=0.1, top=0.9)
        >>> canvas.install_inset([0.1, 0.9, 0.1, 0.9])  # or a sequence
        """
        # normalize input
        if len(args) == 1 and not kwargs:
            rect = args[0]
            if not isinstance(rect, Rect):
                rect = Rect.with_check(*rect)
        else:
            rect = Rect.with_check(*args, **kwargs)
        try:
            new = self._canvas()._plt_inset(rect)
        except AttributeError:
            raise NotImplementedError(
                f"Backend {self._get_backend()} does not support `install_inset`"
            ) from None
        canvas = Canvas.from_backend(new, palette=palette, backend=self._get_backend())
        canvas._init_canvas()
        return canvas

    @property
    def visible(self):
        """Show the canvas."""
        return self._canvas()._plt_get_visible()

    @visible.setter
    def visible(self, visible):
        """Hide the canvas."""
        self._canvas()._plt_set_visible(visible)

    @property
    def lims(self) -> Rect:
        """Return the x/y limits of the canvas."""
        return Rect(*self.x.lim, *self.y.lim)

    @lims.setter
    def lims(self, lims: tuple[float, float, float, float]):
        xmin, xmax, ymin, ymax = lims
        if xmin >= xmax or ymin >= ymax:
            raise ValueError(f"Invalid view rect: {Rect(*lims)}")
        with self.events.lims.blocked():
            self.x._unsafe_set_lim(xmin, xmax)
            self.y._unsafe_set_lim(ymin, ymax)
        self._draw_canvas()
        self.events.lims.emit(Rect(xmin, xmax, ymin, ymax))

    def update_axes(
        self,
        *,
        visible: bool | None = None,
        color: ColorType | None = None,
    ):
        """
        Update axes appearance.

        Parameters
        ----------
        visible : bool, optional
            Whether to show the axes.
        color : color-like, optional
            Color of the axes.
        """
        if visible is not None:
            self.x.ticks.visible = self.y.ticks.visible = visible
        if color is not None:
            self.x.color = self.y.color = color
            self.x.ticks.color = self.y.ticks.color = color
            self.x.label.color = self.y.label.color = color
        return self

    def update_labels(
        self,
        title: str | None = None,
        x: str | None = None,
        y: str | None = None,
    ) -> Self:
        """
        Helper function to update the title, x, and y labels.

        >>> from whitecanvas import new_canvas
        >>> canvas = new_canvas("matplotlib").update_labels("Title", "X", "Y")
        """
        if title is not None:
            self.title.text = title
            self.title.visible = True
        if x is not None:
            self.x.label.text = x
            self.x.label.visible = True
        if y is not None:
            self.y.label.text = y
            self.y.label.visible = True
        return self

    def update_font(
        self,
        size: float | None = None,
        color: ColorType | None = None,
        family: str | None = None,
    ) -> Self:
        """
        Update all the fonts, including the title, x/y labels and x/y tick labels.

        Parameters
        ----------
        size : float, optional
            New font size.
        color : color-like, optional
            New font color.
        family : str, optional
            New font family.
        """
        if size is not None:
            self.title.size = self.x.label.size = self.y.label.size = size
            self.x.ticks.size = self.y.ticks.size = size
        if family is not None:
            self.title.family = self.x.label.family = self.y.label.family = family
            self.x.ticks.family = self.y.ticks.family = family
        if color is not None:
            self.title.color = self.x.label.color = self.y.label.color = color
            self.x.ticks.color = self.y.ticks.color = color
        return self

    def cat(
        self,
        data: _DF,
        x: str | None = None,
        y: str | None = None,
        *,
        update_labels: bool = True,
    ) -> _df.CatPlotter[Self, _DF]:
        """
        Categorize input data for plotting.

        This method provides categorical plotting methods for the input data.
        Methods are very similar to `seaborn` and `plotly.express`.

        Parameters
        ----------
        data : tabular data
            Any categorizable data. Currently, dict, pandas.DataFrame, and
            polars.DataFrame are supported.
        x : str, optional
            Name of the column that will be used for the x-axis. Must be numerical.
        y : str, optional
            Name of the column that will be used for the y-axis. Must be numerical.
        update_labels : bool, default True
            If True, update the x/y labels to the corresponding names.

        Returns
        -------
        CatPlotter
            Plotter object.
        """
        plotter = _df.CatPlotter(self, data, x, y, update_labels=update_labels)
        return plotter

    def cat_x(
        self,
        data: _DF,
        x: str | Sequence[str] | None = None,
        y: str | None = None,
        *,
        update_labels: bool = True,
        numeric_axis: bool = False,
    ) -> _df.XCatPlotter[Self, _DF]:
        """
        Categorize input data for plotting with x-axis as a categorical axis.

        Parameters
        ----------
        data : tabular data
            Any categorizable data. Currently, dict, pandas.DataFrame, and
            polars.DataFrame are supported.
        x : str or sequence of str, optional
            Name of the column(s) that will be used for the x-axis. Must be categorical.
        y : str, optional
            Name of the column that will be used for the y-axis. Must be numerical.
        update_labels : bool, default True
            If True, update the x/y labels to the corresponding names.
        numeric_axis : bool, default False
            If True, the x-axis will be treated as a numerical axis. For example, if
            categories are [2, 4, 8], the x coordinates will be mapped to [0, 1, 2] by
            default, but if this option is True, the x coordinates will be [2, 4, 8].

        Returns
        -------
        XCatPlotter
            Plotter object.
        """
        return _df.XCatPlotter(self, data, x, y, update_labels, numeric=numeric_axis)

    def cat_y(
        self,
        data: _DF,
        x: str | None = None,
        y: str | Sequence[str] | None = None,
        *,
        update_labels: bool = True,
        numeric_axis: bool = False,
    ) -> _df.YCatPlotter[Self, _DF]:
        """
        Categorize input data for plotting with y-axis as a categorical axis.

        Parameters
        ----------
        data : tabular data
            Any categorizable data. Currently, dict, pandas.DataFrame, and
            polars.DataFrame are supported.
        x : str, optional
            Name of the column that will be used for the x-axis. Must be numerical.
        y : str or sequence of str, optional
            Name of the column(s) that will be used for the y-axis. Must be categorical.
        update_labels : bool, default True
            If True, update the x/y labels to the corresponding names.
        numeric_axis : bool, default False
            If True, the x-axis will be treated as a numerical axis. For example, if
            categories are [2, 4, 8], the y coordinates will be mapped to [0, 1, 2] by
            default, but if this option is True, the y coordinates will be [2, 4, 8].

        Returns
        -------
        YCatPlotter
            Plotter object
        """
        return _df.YCatPlotter(self, data, y, x, update_labels, numeric=numeric_axis)

    def cat_xy(
        self,
        data: _DF,
        x: str | Sequence[str],
        y: str | Sequence[str],
        *,
        update_labels: bool = True,
    ) -> _df.XYCatPlotter[Self, _DF]:
        """
        Categorize input data for plotting with both axes as categorical.

        Parameters
        ----------
        data : tabular data
            Any categorizable data. Currently, dict, pandas.DataFrame, and
            polars.DataFrame are supported.
        x : str or sequence of str, optional
            Name of the column(s) that will be used for the x-axis. Must be categorical.
        y : str or sequence of str, optional
            Name of the column(s) that will be used for the y-axis. Must be categorical.
        update_labels : bool, default True
            If True, update the x/y labels to the corresponding names.

        Returns
        -------
        XYCatPlotter
            Plotter object
        """
        return _df.XYCatPlotter(self, data, x, y, update_labels)

    def stack_over(self, layer: _L0) -> StackOverPlotter[Self, _L0]:
        """
        Stack new data over the existing layer.

        For example following code

        >>> bars_0 = canvas.add_bars(x, y0)
        >>> bars_1 = canvas.stack_over(bars_0).add(y1)
        >>> bars_2 = canvas.stack_over(bars_1).add(y2)

        will result in a bar plot like this

        ```
         ┌───┐
         ├───│┌───┐
         │   │├───│
         ├───│├───│
        ─┴───┴┴───┴─
        ```
        """
        if not isinstance(layer, (_l.Bars, _l.Band, _lg.StemPlot, _lg.LabeledBars)):
            raise TypeError(
                f"Only Bars, StemPlot and Band are supported as an input, "
                f"got {type(layer)!r}."
            )
        return StackOverPlotter(self, layer)

    # TODO
    # def annotate(self, layer, at: int):
    #     ...

    def between(self, l0, l1) -> BetweenPlotter[Self]:
        return BetweenPlotter(self, l0, l1)

    def fit(self, layer: _l.DataBoundLayer[_P]) -> FitPlotter[Self, _P]:
        """The fit plotter namespace."""
        return FitPlotter(self, layer)

    def add_legend(
        self,
        layers: Sequence[str | _l.Layer] | None = None,
        *,
        location: Location | LocationStr = "top_right",
        title: str | None = None,
        name_filter: Callable[[str], bool] = not_starts_with_underscore,
    ):
        """
        Add legend items to the canvas.

        Parameters
        ----------
        layers : sequence of layer or str, optional
            Which item to be added to the legend. If str is given, it will be converted
            into a legend title label.
        location : LegendLocation, default "top_right"
            Location of the legend. Can be combination of "top", "bottom", "left",
            "right" and "center" (e.g., "top_left", "center_right").

            ```
                   (2) left  center right
                         v     v     v
              (1)     ┌─────────────────┐
               top -> │                 │
            center -> │     canvas      │
            bottom -> │                 │
                      └─────────────────┘
            ```

            Some backends also support adding legend outside the canvas. Following
            strings suffixed with "_side" can be used in combination with those strings
            above (e.g., "bottom_side_rigth", "right_side_top").

            ```
               top_side -> ┌────────┐
                        ┌──┼────────┼──┐
            left_side ->│  │ canvas │  │<- right_side
                        └──┼────────┼──┘
            bottom_side -> └────────┘
            ```
        title : str, optional
            If given, title label will be added as the first legend item.
        name_filter : callable, default not_starts_with_underscore
            A callable that returns True if the name should be included in the legend.
        """
        if layers is None:
            layers = list(self.layers)
        if title is not None:
            layers = [title, *layers]
        location = Location.parse(location)

        items = list[tuple[str, _legend.LegendItem]]()
        for layer in layers:
            if isinstance(layer, str):
                items.append((layer, _legend.TitleItem()))
            elif isinstance(layer, _l.Layer):
                if not name_filter(layer.name):
                    continue
                items.append((layer.name, layer._as_legend_item()))
            else:
                raise TypeError(f"Expected a list of layer or str, got {type(layer)}.")
        self._canvas()._plt_make_legend(items, location)

    @overload
    def add_line(
        self, ydata: ArrayLike1D, *, name: str | None = None,
        color: ColorType | None = None, width: float = 1.0,
        style: LineStyle | str = LineStyle.SOLID, alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.Line:  # fmt: skip
        ...

    @overload
    def add_line(
        self, xdata: ArrayLike1D, ydata: ArrayLike1D, *, name: str | None = None,
        color: ColorType | None = None, width: float | None = None,
        style: LineStyle | str | None = None, alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.Line:  # fmt: skip
        ...

    @overload
    def add_line(
        self, xdata: ArrayLike1D, ydata: Callable[[ArrayLike1D], ArrayLike1D], *,
        name: str | None = None, color: ColorType | None = None,
        width: float | None = None, style: LineStyle | str | None = None,
        alpha: float = 1.0, antialias: bool = True,
    ) -> _l.Line:  # fmt: skip
        ...

    def add_line(
        self,
        *args,
        name=None,
        color=None,
        width=None,
        style=None,
        alpha=1.0,
        antialias=True,
    ):
        """
        Add a Line layer to the canvas.

        >>> canvas.add_line(y, ...)
        >>> canvas.add_line(x, y, ...)

        Parameters
        ----------
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        Line
            The line layer.
        """
        xdata, ydata = normalize_xy(*args)
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.Line(
            xdata, ydata, name=name, color=color, width=width, style=style,
            alpha=alpha, antialias=antialias, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    @overload
    def add_markers(
        self, xdata: ArrayLike1D, ydata: ArrayLike1D, *,
        name: str | None = None, symbol: Symbol | str | None = None,
        size: float | None = None, color: ColorType | None = None, alpha: float = 1.0,
        hatch: str | Hatch | None = None,
    ) -> _l.Markers[_mixin.ConstFace, _mixin.ConstEdge, float]:  # fmt: skip
        ...

    @overload
    def add_markers(
        self, ydata: ArrayLike1D, *,
        name: str | None = None, symbol: Symbol | str | None = None,
        size: float | None = None, color: ColorType | None = None, alpha: float = 1.0,
        hatch: str | Hatch | None = None,
    ) -> _l.Markers[_mixin.ConstFace, _mixin.ConstEdge, float]:  # fmt: skip
        ...

    def add_markers(
        self,
        *args,
        name=None,
        symbol=None,
        size=None,
        color=None,
        alpha=1.0,
        hatch=None,
    ):
        """
        Add markers (scatter plot).

        >>> canvas.add_markers(x, y)  # standard usage
        >>> canvas.add_markers(y)  # use 0, 1, ... for the x values

        Parameters
        ----------
        name : str, optional
            Name of the layer.
        symbol : str or Symbol, optional
            Marker symbols. Use the theme default if not specified.
        size : float, optional
            Marker size. Use the theme default if not specified.
        color : color-like, optional
            Color of the marker faces.
        alpha : float, default 1.0
            Alpha channel of the marker faces.
        hatch : str or FacePattern, optional
            Pattern of the marker faces. Use the theme default if not specified.

        Returns
        -------
        Markers
            The markers layer.
        """
        xdata, ydata = normalize_xy(*args)
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        symbol = theme._default("markers.symbol", symbol)
        size = theme._default("markers.size", size)
        hatch = theme._default("markers.hatch", hatch)
        layer = _l.Markers(
            xdata, ydata, name=name, symbol=symbol, size=size, color=color,
            alpha=alpha, hatch=hatch, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    @overload
    def add_step(
        self, ydata: ArrayLike1D, *, name: str | None = None,
        where: StepStyleStr | StepStyle = "pre", color: ColorType | None = None,
        width: float | None = None, style: LineStyle | str | None = None,
        alpha: float = 1.0, orient: OrientationLike = "horizontal",
        antialias: bool = True,
    ) -> _l.LineStep:  # fmt: skip
        ...

    @overload
    def add_step(
        self, xdata: ArrayLike1D, ydata: ArrayLike1D, *, name: str | None = None,
        where: StepStyleStr | StepStyle = "pre", color: ColorType | None = None,
        width: float | None = None, style: LineStyle | str | None = None,
        alpha: float = 1.0, orient: OrientationLike = "horizontal",
        antialias: bool = True,
    ) -> _l.LineStep:  # fmt: skip
        ...

    def add_step(
        self,
        *args,
        name=None,
        where="pre",
        color=None,
        width=None,
        style=None,
        alpha=1.0,
        antialias=True,
    ):
        """
        Add a step plot to the canvas.

        >>> canvas.add_step(y, ...)
        >>> canvas.add_step(x, y, ...)

        Parameters
        ----------
        name : str, optional
            Name of the layer.
        where : str or StepStyle, default "pre"
            Where the step should be placed.
        color : color-like, optional
            Color of the steps.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        LineStep
            The line-step layer.
        """
        xdata, ydata = normalize_xy(*args)
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.LineStep(
            xdata, ydata, name=name, color=color, width=width, style=style, where=where,
            alpha=alpha, antialias=antialias, backend=self._get_backend()
        )  # fmt: skip
        return self.add_layer(layer)

    @overload
    def add_bars(
        self, center: ArrayLike1D, height: ArrayLike1D, *,
        bottom: ArrayLike1D | None = None, name=None,
        orient: OrientationLike = "vertical", extent: float | None = None,
        color: ColorType | None = None, alpha: float = 1.0,
        hatch: str | Hatch | None = None,
    ) -> _l.Bars[_mixin.ConstFace, _mixin.ConstEdge]:  # fmt: skip
        ...

    @overload
    def add_bars(
        self, height: ArrayLike1D, *, bottom: ArrayLike1D | None = None,
        name=None, orient: OrientationLike = "vertical",
        extent: float | None = None, color: ColorType | None = None,
        alpha: float = 1.0, hatch: str | Hatch | None = None,
    ) -> _l.Bars[_mixin.ConstFace, _mixin.ConstEdge]:  # fmt: skip
        ...

    def add_bars(
        self,
        *args,
        bottom=None,
        name=None,
        orient="vertical",
        extent=None,
        color=None,
        alpha=1.0,
        hatch=None,
    ):
        """
        Add a bar plot.

        >>> canvas.add_bars(x, heights)  # standard usage
        >>> canvas.add_bars(heights)  # use 0, 1, ... for the x values
        >>> canvas.add_bars(..., orient="horizontal")  # horizontal bars

        Parameters
        ----------
        bottom : float or array-like, optional
            Bottom level of the bars.
        name : str, optional
            Name of the layer.
        orient : str or Orientation, default "vertical"
            Orientation of the bars.
        extent : float, default 0.8
            Bar width in the canvas coordinate
        color : color-like, optional
            Color of the bars.
        alpha : float, default 1.0
            Alpha channel of the bars.
        hatch : str or FacePattern, default FacePattern.SOLID
            Pattern of the bar faces.

        Returns
        -------
        Bars
            The bars layer.
        """
        center, height = normalize_xy(*args)
        if bottom is not None:
            bottom = as_array_1d(bottom)
            if bottom.shape != height.shape:
                raise ValueError("Expected bottom to have the same shape as height")
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        extent = theme._default("bars.extent", extent)
        hatch = theme._default("bars.hatch", hatch)
        layer = _l.Bars(
            center, height, bottom, extent=extent, name=name, orient=orient,
            color=color, alpha=alpha, hatch=hatch, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_hist(
        self,
        data: ArrayLike1D,
        *,
        bins: HistBinType = "auto",
        limits: tuple[float, float] | None = None,
        name: str | None = None,
        shape: Literal["step", "polygon", "bars"] = "bars",
        kind: Literal["count", "density", "frequency", "percent"] = "count",
        orient: OrientationLike = "vertical",
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str | None = None,
    ) -> _lg.Histogram:
        """
        Add data as a histogram.

        >>> canvas.add_hist(np.random.normal(size=100), bins=12)

        Parameters
        ----------
        data : array-like
            1D Array of data.
        bins : int or 1D array-like, default "auto"
            Bins of the histogram. This parameter will directly be passed
            to `np.histogram`.
        limits : (float, float), optional
            Limits in which histogram will be built. This parameter will equivalent to
            the `range` paraneter of `np.histogram`.
        name : str, optional
            Name of the layer.
        shape : {"step", "polygon", "bars"}, default "bars"
            Shape of the histogram. This parameter defines how to convert the data into
            the line nodes.
        kind : {"count", "density", "probability", "frequency", "percent"}, optional
            Kind of the histogram.
        orient : str or Orientation, default "vertical"
            Orientation of the bars.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.

        Returns
        -------
        Bars
            The bars layer that represents the histogram.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _lg.Histogram.from_array(
            data, bins=bins, limits=limits, shape=shape, kind=kind, name=name,
            color=color, width=width, style=style, orient=orient,
            backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_hist2d(
        self,
        x: ArrayLike1D,
        y: ArrayLike1D,
        *,
        cmap: ColormapType = "inferno",
        name: str | None = None,
        bins: HistBinType | tuple[HistBinType, HistBinType] = "auto",
        rangex: tuple[float, float] | None = None,
        rangey: tuple[float, float] | None = None,
        density: bool = False,
    ) -> _l.Image:
        """
        Add a 2D histogram of given X/Y data.

        >>> x = np.random.normal(size=100)
        >>> y = np.random.normal(size=200)
        >>> canvas.add_hist2d(x, y)

        Note that unlike `add_image()` method, this method does not lock the aspect
        ratio and flip the canvas by default.

        Parameters
        ----------
        x : array-like
            1D Array of X data.
        y : array-like
            1D Array of Y data.
        cmap : ColormapType, default "gray"
            Colormap used for the image.
        name : str, optional
            Name of the layer.
        bins : int or tuple[int, int], optional
            Bins of the histogram of X/Y dimension respectively. If an integer is given,
            it will be used for both dimensions.
        rangex : (float, float), optional
            Range of x values in which histogram will be built.
        rangey : (float, float), optional
            Range of y values in which histogram will be built.
        density : bool, default False
            If True, values of the histogram will be normalized so that the total
            intensity of the histogram will be 1.

        Returns
        -------
        Image
            Image layer representing the 2D histogram.
        """
        layer = _l.Image.build_hist(
            x, y, bins=bins, range=(rangex, rangey), density=density, name=name,
            cmap=cmap, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_rects(
        self,
        coords: ArrayLike,
        *,
        name: str | None = None,
        color: ColorType | None = None,
        alpha: float = 1.0,
        hatch: str | Hatch | None = None,
    ) -> _l.Rects[_mixin.ConstFace, _mixin.ConstEdge]:
        """
        Add rectangles.

        Parameters
        ----------
        coords : ArrayLike
            (N, 4) array of coordinates. Each row should contain (x0, y0, x1, y1), where
            (x0, y0) is the bottom-left corner and (x1, y1) is the top-right corner.
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        alpha : float, default 1.0
            Alpha channel of the rectangles.
        hatch : str or FacePattern, default FacePattern.SOLID
            Pattern of the rectangle faces.

        Returns
        -------
        _l.Rects[_mixin.ConstFace, _mixin.ConstEdge]
            _description_
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        hatch = theme._default("bars.hatch", hatch)
        layer = _l.Rects(
            coords, name=name, color=color, alpha=alpha, hatch=hatch,
            backend=self._get_backend()
        )  # fmt: skip
        return self.add_layer(layer)

    def add_cdf(
        self,
        data: ArrayLike1D,
        *,
        name: str | None = None,
        orient: OrientationLike = "vertical",
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str | None = None,
        alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.Line:
        """
        Add a empirical cumulative distribution function (CDF) plot.

        >>> canvas.add_cdf(np.random.normal(size=100))

        Parameters
        ----------
        data : array-like
            1D Array of data.
        name : str, optional
            Name of the layer.
        orient : str or Orientation, default "vertical"
            Orientation of the bars.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        Line
            The line layer that represents the CDF.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.Line.build_cdf(
            data, orient=orient, name=name, color=color, width=width, style=style,
            alpha=alpha, antialias=antialias, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_spans(
        self,
        spans: ArrayLike,
        *,
        name: str | None = None,
        orient: OrientationLike = "vertical",
        color: ColorType = "blue",
        alpha: float = 0.4,
        hatch: str | Hatch = Hatch.SOLID,
    ) -> _l.Spans:
        """
        Add spans that extends infinitely.

        >>> canvas.add_spans([[5, 10], [15, 20]])

           |::::|     |::::|
           |::::|     |::::|
        ───5────10────15───20─────>
           |::::|     |::::|
           |::::|     |::::|

        Parameters
        ----------
        spans : (N, 2) array-like
            Array that contains the start and end points of the spans.
        name : str, optional
            Name of the layer.
        orient : str or Orientation, default "vertical"
            Orientation of the bars.
        color : color-like, optional
            Color of the bars.
        alpha : float, default 0.4
            Alpha channel of the bars.
        hatch : str or FacePattern, default FacePattern.SOLID
            Pattern of the bar faces.

        Returns
        -------
        Spans
            The spans layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        layer = _l.Spans(
            spans, name=name, orient=orient, color=color, alpha=alpha,
            hatch=hatch, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_vectors(
        self,
        x: ArrayLike1D,
        y: ArrayLike1D,
        vx: ArrayLike1D,
        vy: ArrayLike1D,
        *,
        name: str | None = None,
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str | None = None,
        alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.Vectors:
        """
        Add a vector field to the canvas.

        >>> canvas.add_vectors(x, y, vx, vy)

        Parameters
        ----------
        x : array-like
            X coordinates of the vectors.
        y : array-like
            Y coordinates of the vectors.
        vx : array-like
            X components of the vectors.
        vy : array-like
            Y components of the vectors.
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        Vectors
            The vectors layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.Vectors(
            as_array_1d(x, dtype=np.float32), as_array_1d(y, dtype=np.float32),
            as_array_1d(vx, dtype=np.float32), as_array_1d(vy, dtype=np.float32),
            name=name, color=color, width=width, style=style,
            alpha=alpha, antialias=antialias, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_infline(
        self,
        pos: tuple[float, float] = (0, 0),
        angle: float = 0.0,
        *,
        name: str | None = None,
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str | None = None,
        alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.InfLine:
        """
        Add an infinitely long line to the canvas.

        >>> canvas.add_infline((0, 0), 45)  # y = x
        >>> canvas.add_infline((1, 0), 90)  # x = 1
        >>> canvas.add_infline((0, -1), 0)  # y = -1

        Parameters
        ----------
        pos : (float, float), default (0, 0)
            One of the points this line passes.
        angle : float, default 0.0
            Angle of the line in degree, defined by the counter-clockwise
            rotation from the x axis.
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        InfLine
            The infline layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.InfLine(
            pos, angle, name=name, color=color, alpha=alpha,
            width=width, style=style, antialias=antialias,
            backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_infcurve(
        self,
        model: Callable[Concatenate[Any, _P], Any],
        *,
        bounds: tuple[float, float] = (-float("inf"), float("inf")),
        name: str | None = None,
        color: ColorType | None = None,
        width: float | None = None,
        style: str | LineStyle | None = None,
        alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.InfCurve[_P]:
        """
        Add an infinite curve to the canvas.

        >>> canvas.add_infcurve(lambda x: x ** 2)  # parabola
        >>> canvas.add_infcurve(lambda x, a: np.sin(a*x)).update_params(2)  # parametric

        Parameters
        ----------
        model : callable
            The model function. The first argument must be the x coordinates. Same
            signature as `scipy.optimize.curve_fit`.
        bounds : (float, float), default (-inf, inf)
            Lower and upper bounds that the function is defined.
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        InfCurve
            The infcurve layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.InfCurve(
            model, bounds=bounds, name=name, color=color, width=width, alpha=alpha,
            style=style, antialias=antialias, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_hline(
        self,
        y: float,
        *,
        name: str | None = None,
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str = LineStyle.SOLID,
        alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.InfLine:
        """
        Add a infinite horizontal line to the canvas.

        Parameters
        ----------
        y : float
            Y coordinate of the line.
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        InfLine
            The infline layer.
        """
        return self.add_infline(
            (0, y), 0, name=name, color=color, width=width, style=style, alpha=alpha,
            antialias=antialias
        )  # fmt: skip

    def add_vline(
        self,
        x: float,
        *,
        name: str | None = None,
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str = LineStyle.SOLID,
        alpha: float = 1.0,
        antialias: bool = True,
    ) -> _l.InfLine:
        """
        Add a infinite vertical line to the canvas.

        Parameters
        ----------
        x : float
            X coordinate of the line.
        name : str, optional
            Name of the layer.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        InfLine
            The infline layer.
        """
        return self.add_infline(
            (x, 0), 90, name=name, color=color, width=width, style=style, alpha=alpha,
            antialias=antialias,
        )  # fmt: skip

    def add_band(
        self,
        xdata: ArrayLike1D,
        ylow: ArrayLike1D,
        yhigh: ArrayLike1D,
        *,
        name: str | None = None,
        orient: OrientationLike = "vertical",
        color: ColorType | None = None,
        alpha: float = 1.0,
        hatch: str | Hatch = Hatch.SOLID,
    ) -> _l.Band:
        """
        Add a band (fill-between) layer to the canvas.

        Parameters
        ----------
        xdata : array-like
            X coordinates of the band.
        ylow : array-like
            Either lower or upper y coordinates of the band.
        yhigh : array-like
            The other y coordinates of the band.
        name : str, optional
            Name of the layer, by default None
        orient : str, Orientation, default "vertical"
            Orientation of the band. If vertical, band will be filled between
            vertical orientation.,
        color : color-like, default None
            Color of the band face.,
        alpha : float, default 1.0
            Alpha channel of the band face.
        hatch : str, FacePattern, default FacePattern.SOLID
            Hatch of the band face.

        Returns
        -------
        Band
            The band layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        layer = _l.Band(
            xdata, ylow, yhigh, name=name, orient=orient, color=color,
            alpha=alpha, hatch=hatch, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_errorbars(
        self,
        xdata: ArrayLike1D,
        ylow: ArrayLike1D,
        yhigh: ArrayLike1D,
        *,
        name: str | None = None,
        orient: OrientationLike = "vertical",
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str | None = None,
        alpha: float = 1.0,
        antialias: bool = False,
        capsize: float = 0.0,
    ) -> _l.Errorbars:
        """
        Add parallel lines as errorbars.

        Parameters
        ----------
        xdata : array-like
            X coordinates of the errorbars.
        ylow : array-like
            Lower bound of the errorbars.
        yhigh : array-like
            Upper bound of the errorbars.
        name : str, optional
            Name of the layer.
        orient : str or Orientation, default "vertical"
            Orientation of the errorbars. If vertical, errorbars will be parallel
            to the y axis.
        color : color-like, optional
            Color of the bars.
        width : float, optional
            Line width. Use the theme default if not specified.
        style : str or LineStyle, optional
            Line style. Use the theme default if not specified.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.
        capsize : float, default 0.0
            Size of the caps of the error indicators

        Returns
        -------
        Errorbars
            The errorbars layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)
        layer = _l.Errorbars(
            xdata, ylow, yhigh, name=name, color=color, width=width,
            style=style, antialias=antialias, capsize=capsize, alpha=alpha,
            orient=orient, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_rug(
        self,
        events: ArrayLike1D,
        *,
        low: float = 0.0,
        high: float = 1.0,
        name: str | None = None,
        orient: OrientationLike = "vertical",
        color: ColorType = "black",
        width: float = 1.0,
        style: LineStyle | str = LineStyle.SOLID,
        antialias: bool = True,
        alpha: float = 1.0,
    ) -> _l.Rug:
        """
        Add input data as a rug plot.

        >>> canvas.add_rug([2, 4, 5, 8, 11])

        ```
          │ ││  │   │
        ──┴─┴┴──┴───┴──> x
          2 45  8   11
        ```

        Parameters
        ----------
        events : array-like
            A 1D array of events.
        low : float, default 0.0
            The lower bound of the rug lines.
        high : float, default 1.0
            The upper bound of the rug lines.
        name : str, optional
            Name of the layer.
        orient : str or Orientation, default "vertical"
            Orientation of the errorbars. If vertical, rug lines will be parallel
            to the y axis.
        color : color-like, optional
            Color of the bars.
        width : float, default 1.0
            Line width.
        style : str or LineStyle, default LineStyle.SOLID
            Line style.
        alpha : float, default 1.0
            Alpha channel of the line.
        antialias : bool, default True
            Antialiasing of the line.

        Returns
        -------
        Rug
            The rug layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        layer = _l.Rug(
            events, low=low, high=high, name=name, color=color, alpha=alpha,
            width=width, style=style, antialias=antialias, orient=orient,
            backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_kde(
        self,
        data: ArrayLike1D,
        *,
        bottom: float = 0.0,
        name: str | None = None,
        orient: OrientationLike = "vertical",
        band_width: KdeBandWidthType = "scott",
        color: ColorType | None = None,
        width: float | None = None,
        style: LineStyle | str | None = None,
    ) -> _lg.Kde:
        """
        Add data as a band layer representing kernel density estimation (KDE).

        Parameters
        ----------
        data : array-like
            1D data to calculate the KDE.
        bottom : float, default 0.0
            Scalar value that define the height of the bottom line.
        name : str, optional
            Name of the layer, by default None
        orient : str, Orientation, default "vertical"
            Orientation of the KDE.
        band_width : float or str, default "scott"
            Method to calculate the estimator bandwidth.
        color : color-like, default None
            Color of the band face.
        width : float, optional
            Line width of the outline.
        style : str or LineStyle, optional
            Line style of the outline.

        Returns
        -------
        Kde
            The KDE layer.
        """
        name = self._coerce_name(name)
        color = self._generate_colors(color)
        width = theme._default("line.width", width)
        style = theme._default("line.style", style)

        layer = _lg.Kde.from_array(
            data, bottom=bottom, scale=1, band_width=band_width, name=name,
            orient=orient, color=color, width=width, style=style,
            backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    @overload
    def add_text(
        self, x: ArrayLike1D, y: ArrayLike1D, string: list[str], *,
        color: ColorType = "black", size: float = 12, rotation: float = 0.0,
        anchor: str | Alignment = Alignment.BOTTOM_LEFT, family: str | None = None,
    ) -> _l.Texts[_mixin.ConstFace, _mixin.ConstEdge, _mixin.ConstFont]:  # fmt: skip
        ...

    @overload
    def add_text(
        self, x: float, y: float, string: str, *, color: ColorType = "black",
        size: float = 12, rotation: float = 0.0,
        anchor: str | Alignment = Alignment.BOTTOM_LEFT, family: str | None = None,
    ) -> _l.Texts[_mixin.ConstFace, _mixin.ConstEdge, _mixin.ConstFont]:  # fmt: skip
        ...

    def add_text(
        self,
        x,
        y,
        string,
        *,
        color="black",
        size=12,
        rotation=0.0,
        anchor=Alignment.BOTTOM_LEFT,
        family=None,
    ):
        """
        Add a text layer to the canvas.

        >>> canvas.add_text([0, 0], [1, 1], ["text-0", "text-1])
        >>> canvas.add_text(...).with_face(color="red")  # with background
        >>> canvas.add_text(...).with_edge(color="red")  # with outline

        Parameters
        ----------
        x : float or array-like
            X position(s) of the text.
        y : float or array-like
            Y position(s) of the text.
        string : str or list[str]
            Text string to display.
        color : ColorType, optional
            Color of the text string.
        size : float, default 12
            Point size of the text.
        rotation : float, default 0.0
            Rotation angle of the text in degrees.
        anchor : str or Alignment, default Alignment.BOTTOM_LEFT
            Anchor position of the text. The anchor position will be the coordinate
            given by (x, y).
        family : str, optional
            Font family of the text.

        Returns
        -------
        Texts
            The text layer.
        """
        if is_real_number(x) and is_real_number(y) and isinstance(string, str):
            x, y, string = [x], [y], [string]
        x_, y_ = normalize_xy(x, y)
        if isinstance(string, str):
            string = [string] * x_.size
        elif len(string) != x_.size:
            raise ValueError("Expected string to have the same size as x/y")
        layer = _l.Texts(
            x_, y_, string, color=color, size=size, rotation=rotation, anchor=anchor,
            family=family, backend=self._get_backend(),
        )  # fmt: skip
        return self.add_layer(layer)

    def add_image(
        self,
        image: ArrayLike,
        *,
        name: str | None = None,
        cmap: ColormapType | None = None,
        clim: tuple[float | None, float | None] | None = None,
        flip_canvas: bool = True,
        lock_aspect: bool = True,
    ) -> _l.Image:
        """
        Add an image layer to the canvas.

        This method automatically flips the image vertically by default. `add_heatmap`
        does the similar thing with slightly different default settings.

        Parameters
        ----------
        image : ArrayLike
            Image data. Must be 2D or 3D array. If 3D, the last dimension must be
            RGB(A). Note that the first dimension is the vertical axis.
        cmap : ColormapType, optional
            Colormap used for the image. If None, the theme default for image colormap
            will be used.
        clim : (float or None, float or None) or None
            Contrast limits. If None, the limits are automatically determined by min and
            max of the data. You can also pass None separately to either limit to use
            the default behavior.
        flip_canvas : bool, default True
            If True, flip the canvas vertically so that the image looks normal.
        lock_aspect : bool, default True
            If True, lock the aspect ratio of the canvas to 1:1.

        Returns
        -------
        Image
            The image layer.
        """
        cmap = theme._default("colormap_image", cmap)
        layer = _l.Image(
            image, name=name, cmap=cmap, clim=clim, backend=self._get_backend()
        )
        self.add_layer(layer)
        if flip_canvas and not self.y.flipped:
            self.y.flipped = True
        if lock_aspect:
            self.aspect_ratio = 1.0
        return layer

    def add_heatmap(
        self,
        image: ArrayLike,
        *,
        name: str | None = None,
        cmap: ColormapType = "inferno",
        clim: tuple[float | None, float | None] | None = None,
        flip_canvas: bool = False,
    ) -> _l.Image:
        """
        Add an image layer to the canvas as a heatmap.

        Use `add_image` to add the layer as an image.

        Parameters
        ----------
        image : ArrayLike
            Image data. Must be 2D or 3D array. If 3D, the last dimension must be
            RGB(A). Note that the first dimension is the vertical axis.
        cmap : ColormapType, default "gray"
            Colormap used for the image.
        clim : (float or None, float or None) or None
            Contrast limits. If None, the limits are automatically determined by min and
            max of the data. You can also pass None separately to either limit to use
            the default behavior.
        flip_canvas : bool, default False
            If True, flip the canvas vertically so that the image looks normal.

        Returns
        -------
        Image
            The image layer.
        """
        layer = _l.Image(
            image, name=name, cmap=cmap, clim=clim, backend=self._get_backend()
        )
        self.add_layer(layer)
        if flip_canvas and not self.y.flipped:
            self.y.flipped = True
        return layer

    def add_layer(
        self,
        layer: _L,
        *,
        over: _l.Layer | Iterable[_l.Layer] | None = None,
        under: _l.Layer | Iterable[_l.Layer] | None = None,
    ) -> _L:
        """Add a layer to the canvas."""
        if over is None and under is None:
            if isinstance(layer, _l.LayerStack):
                self.dims.in_axes(layer.axis_names)  # add multidims
            self.layers.append(layer)
        elif over is not None:
            if under is not None:
                raise ValueError("Cannot specify both `over` and `under`")
            if isinstance(over, _l.Layer):
                idx = self.layers.index(over)
            else:
                idx = max([self.layers.index(l) for l in over])
            self.layers.insert(idx + 1, layer)
        else:
            if isinstance(under, _l.Layer):
                idx = self.layers.index(under)
            else:
                idx = min([self.layers.index(l) for l in under])
            self.layers.insert(idx, layer)
        return layer

    @overload
    def group_layers(
        self,
        layers: Iterable[_l.Layer],
        name: str | None = None,
    ) -> _l.LayerGroup: ...

    @overload
    def group_layers(
        self, *layers: _l.Layer, name: str | None = None
    ) -> _l.LayerGroup: ...

    def group_layers(self, layers, *more_layers, name=None):
        """
        Group layers.

        Parameters
        ----------
        layers : iterable of Layer
            Layers to group.

        Returns
        -------
        LayerGroup
            The grouped layer.
        """
        if more_layers:
            if not isinstance(layers, _l.Layer):
                raise TypeError("No overload matches the arguments")
            layers = [layers, *more_layers]
        return _lg.LayerTuple(layers, name=name)

    def _autoscale_for_layer(
        self,
        layer: _l.Layer,
        pad_rel: float | None = None,
        maybe_empty: bool = True,
    ):
        """This function will be called when a layer is inserted to the canvas."""
        if not self.autoscale_enabled:
            return
        if pad_rel is None:
            pad_rel = 0 if layer._NO_PADDING_NEEDED else 0.025
        xmin, xmax, ymin, ymax = layer.bbox_hint()

        _force_calc = len(self.layers) > 1 or not maybe_empty
        # NOTE: if there was no layer, so backend may not have xlim/ylim,
        # or they may be set to a default value.
        if _force_calc or self.x._lim_updated_by_user:
            _xmin, _xmax = self.x.lim
            _ymin, _ymax = self.y.lim
            _dx = (_xmax - _xmin) * pad_rel
            xmin = np.min([xmin, _xmin + _dx])
            xmax = np.max([xmax, _xmax - _dx])
        if _force_calc or self.y._lim_updated_by_user:
            _ymin, _ymax = self.y.lim
            _dy = (_ymax - _ymin) * pad_rel
            ymin = np.min([ymin, _ymin + _dy])
            ymax = np.max([ymax, _ymax - _dy])

        # this happens when there is <= 1 data
        small_diff = 1e-6
        if np.isnan(xmax) or np.isnan(xmin):
            xmin, xmax = self.x.lim
        elif xmax - xmin < small_diff:
            xmin -= 0.05
            xmax += 0.05
        else:
            dx = (xmax - xmin) * pad_rel
            if (
                xmin != 0
                or not layer._ATTACH_TO_AXIS
                or getattr(layer, "orient", None) is not Orientation.HORIZONTAL
            ):
                xmin -= dx
            xmax += dx
        if np.isnan(ymax) or np.isnan(ymin):
            ymin, ymax = self.y.lim
        elif ymax - ymin < small_diff:
            ymin -= 0.05
            ymax += 0.05
        else:
            dy = (ymax - ymin) * pad_rel
            if (
                ymin != 0
                or not layer._ATTACH_TO_AXIS
                or getattr(layer, "orient", None) is not Orientation.VERTICAL
            ):
                ymin -= dy
            ymax += dy
        self.lims = xmin, xmax, ymin, ymax

    def _cb_overlay_inserted(self, idx: int, layer: _l.Layer):
        _canvas = self._canvas()
        fn = self._get_backend().get("as_overlay")
        for l in _iter_layers(layer):
            _canvas._plt_add_layer(l._backend)
            fn(l._backend, _canvas)
            l._connect_canvas(self)

        if isinstance(layer, _l.LayerWrapper):
            # TODO: check if connecting LayerGroup is necessary
            fn(l._backend, _canvas)
            layer._connect_canvas(self)

    def _cb_layer_grouped(self, group: _l.LayerGroup):
        indices: list[int] = []  # layers to remove
        not_found: list[_l.PrimitiveLayer] = []  # primitive layers to add
        id_exists = set(map(id, self.layers.iter_primitives()))
        for layer in group.iter_children():
            try:
                idx = self.layers.index(layer)
                indices.append(idx)
            except ValueError:
                not_found.extend(_iter_layers(layer))
        if not indices:
            return
        self._is_grouping = True
        try:
            for idx in reversed(indices):
                # remove from the layer list since it is directly grouped
                self.layers.pop(idx)
            self.layers.append(group)
            _canvas = self._canvas()
            for child in not_found:
                if id(child) in id_exists:
                    # skip since it is already in the canvas
                    continue
                child._connect_canvas(self)
                _canvas._plt_add_layer(child._backend)
        finally:
            self._is_grouping = False
        self._cb_reordered()
        self._autoscale_for_layer(group)

    def _generate_colors(self, color: ColorType | None) -> Color:
        if color is None:
            color = self._color_palette.next()
        return color
aspect_ratio: float | None property writable

Aspect ratio of the canvas (None if not locked).

lims: Rect property writable

Return the x/y limits of the canvas.

native: Any property

Return the native canvas object.

visible property writable

Show the canvas.

add_band(xdata, ylow, yhigh, *, name=None, orient='vertical', color=None, alpha=1.0, hatch=Hatch.SOLID)

Add a band (fill-between) layer to the canvas.

Parameters:

Name Type Description Default
xdata array - like

X coordinates of the band.

required
ylow array - like

Either lower or upper y coordinates of the band.

required
yhigh array - like

The other y coordinates of the band.

required
name str

Name of the layer, by default None

None
orient (str, Orientation)

Orientation of the band. If vertical, band will be filled between vertical orientation.,

"vertical"
color color - like

Color of the band face.,

None
alpha float

Alpha channel of the band face.

1.0
hatch (str, FacePattern)

Hatch of the band face.

FacePattern.SOLID

Returns:

Type Description
Band

The band layer.

Source code in whitecanvas\canvas\_base.py
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
def add_band(
    self,
    xdata: ArrayLike1D,
    ylow: ArrayLike1D,
    yhigh: ArrayLike1D,
    *,
    name: str | None = None,
    orient: OrientationLike = "vertical",
    color: ColorType | None = None,
    alpha: float = 1.0,
    hatch: str | Hatch = Hatch.SOLID,
) -> _l.Band:
    """
    Add a band (fill-between) layer to the canvas.

    Parameters
    ----------
    xdata : array-like
        X coordinates of the band.
    ylow : array-like
        Either lower or upper y coordinates of the band.
    yhigh : array-like
        The other y coordinates of the band.
    name : str, optional
        Name of the layer, by default None
    orient : str, Orientation, default "vertical"
        Orientation of the band. If vertical, band will be filled between
        vertical orientation.,
    color : color-like, default None
        Color of the band face.,
    alpha : float, default 1.0
        Alpha channel of the band face.
    hatch : str, FacePattern, default FacePattern.SOLID
        Hatch of the band face.

    Returns
    -------
    Band
        The band layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    layer = _l.Band(
        xdata, ylow, yhigh, name=name, orient=orient, color=color,
        alpha=alpha, hatch=hatch, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_bars(*args, bottom=None, name=None, orient='vertical', extent=None, color=None, alpha=1.0, hatch=None)

Add a bar plot.

canvas.add_bars(x, heights) # standard usage canvas.add_bars(heights) # use 0, 1, ... for the x values canvas.add_bars(..., orient="horizontal") # horizontal bars

Parameters:

Name Type Description Default
bottom float or array - like

Bottom level of the bars.

None
name str

Name of the layer.

None
orient str or Orientation

Orientation of the bars.

"vertical"
extent float

Bar width in the canvas coordinate

0.8
color color - like

Color of the bars.

None
alpha float

Alpha channel of the bars.

1.0
hatch str or FacePattern

Pattern of the bar faces.

FacePattern.SOLID

Returns:

Type Description
Bars

The bars layer.

Source code in whitecanvas\canvas\_base.py
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
def add_bars(
    self,
    *args,
    bottom=None,
    name=None,
    orient="vertical",
    extent=None,
    color=None,
    alpha=1.0,
    hatch=None,
):
    """
    Add a bar plot.

    >>> canvas.add_bars(x, heights)  # standard usage
    >>> canvas.add_bars(heights)  # use 0, 1, ... for the x values
    >>> canvas.add_bars(..., orient="horizontal")  # horizontal bars

    Parameters
    ----------
    bottom : float or array-like, optional
        Bottom level of the bars.
    name : str, optional
        Name of the layer.
    orient : str or Orientation, default "vertical"
        Orientation of the bars.
    extent : float, default 0.8
        Bar width in the canvas coordinate
    color : color-like, optional
        Color of the bars.
    alpha : float, default 1.0
        Alpha channel of the bars.
    hatch : str or FacePattern, default FacePattern.SOLID
        Pattern of the bar faces.

    Returns
    -------
    Bars
        The bars layer.
    """
    center, height = normalize_xy(*args)
    if bottom is not None:
        bottom = as_array_1d(bottom)
        if bottom.shape != height.shape:
            raise ValueError("Expected bottom to have the same shape as height")
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    extent = theme._default("bars.extent", extent)
    hatch = theme._default("bars.hatch", hatch)
    layer = _l.Bars(
        center, height, bottom, extent=extent, name=name, orient=orient,
        color=color, alpha=alpha, hatch=hatch, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_cdf(data, *, name=None, orient='vertical', color=None, width=None, style=None, alpha=1.0, antialias=True)

Add a empirical cumulative distribution function (CDF) plot.

canvas.add_cdf(np.random.normal(size=100))

Parameters:

Name Type Description Default
data array - like

1D Array of data.

required
name str

Name of the layer.

None
orient str or Orientation

Orientation of the bars.

"vertical"
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
Line

The line layer that represents the CDF.

Source code in whitecanvas\canvas\_base.py
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
def add_cdf(
    self,
    data: ArrayLike1D,
    *,
    name: str | None = None,
    orient: OrientationLike = "vertical",
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str | None = None,
    alpha: float = 1.0,
    antialias: bool = True,
) -> _l.Line:
    """
    Add a empirical cumulative distribution function (CDF) plot.

    >>> canvas.add_cdf(np.random.normal(size=100))

    Parameters
    ----------
    data : array-like
        1D Array of data.
    name : str, optional
        Name of the layer.
    orient : str or Orientation, default "vertical"
        Orientation of the bars.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    Line
        The line layer that represents the CDF.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.Line.build_cdf(
        data, orient=orient, name=name, color=color, width=width, style=style,
        alpha=alpha, antialias=antialias, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_errorbars(xdata, ylow, yhigh, *, name=None, orient='vertical', color=None, width=None, style=None, alpha=1.0, antialias=False, capsize=0.0)

Add parallel lines as errorbars.

Parameters:

Name Type Description Default
xdata array - like

X coordinates of the errorbars.

required
ylow array - like

Lower bound of the errorbars.

required
yhigh array - like

Upper bound of the errorbars.

required
name str

Name of the layer.

None
orient str or Orientation

Orientation of the errorbars. If vertical, errorbars will be parallel to the y axis.

"vertical"
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True
capsize float

Size of the caps of the error indicators

0.0

Returns:

Type Description
Errorbars

The errorbars layer.

Source code in whitecanvas\canvas\_base.py
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
def add_errorbars(
    self,
    xdata: ArrayLike1D,
    ylow: ArrayLike1D,
    yhigh: ArrayLike1D,
    *,
    name: str | None = None,
    orient: OrientationLike = "vertical",
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str | None = None,
    alpha: float = 1.0,
    antialias: bool = False,
    capsize: float = 0.0,
) -> _l.Errorbars:
    """
    Add parallel lines as errorbars.

    Parameters
    ----------
    xdata : array-like
        X coordinates of the errorbars.
    ylow : array-like
        Lower bound of the errorbars.
    yhigh : array-like
        Upper bound of the errorbars.
    name : str, optional
        Name of the layer.
    orient : str or Orientation, default "vertical"
        Orientation of the errorbars. If vertical, errorbars will be parallel
        to the y axis.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.
    capsize : float, default 0.0
        Size of the caps of the error indicators

    Returns
    -------
    Errorbars
        The errorbars layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.Errorbars(
        xdata, ylow, yhigh, name=name, color=color, width=width,
        style=style, antialias=antialias, capsize=capsize, alpha=alpha,
        orient=orient, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_heatmap(image, *, name=None, cmap='inferno', clim=None, flip_canvas=False)

Add an image layer to the canvas as a heatmap.

Use add_image to add the layer as an image.

Parameters:

Name Type Description Default
image ArrayLike

Image data. Must be 2D or 3D array. If 3D, the last dimension must be RGB(A). Note that the first dimension is the vertical axis.

required
cmap ColormapType

Colormap used for the image.

"gray"
clim (float or None, float or None) or None

Contrast limits. If None, the limits are automatically determined by min and max of the data. You can also pass None separately to either limit to use the default behavior.

None
flip_canvas bool

If True, flip the canvas vertically so that the image looks normal.

False

Returns:

Type Description
Image

The image layer.

Source code in whitecanvas\canvas\_base.py
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
def add_heatmap(
    self,
    image: ArrayLike,
    *,
    name: str | None = None,
    cmap: ColormapType = "inferno",
    clim: tuple[float | None, float | None] | None = None,
    flip_canvas: bool = False,
) -> _l.Image:
    """
    Add an image layer to the canvas as a heatmap.

    Use `add_image` to add the layer as an image.

    Parameters
    ----------
    image : ArrayLike
        Image data. Must be 2D or 3D array. If 3D, the last dimension must be
        RGB(A). Note that the first dimension is the vertical axis.
    cmap : ColormapType, default "gray"
        Colormap used for the image.
    clim : (float or None, float or None) or None
        Contrast limits. If None, the limits are automatically determined by min and
        max of the data. You can also pass None separately to either limit to use
        the default behavior.
    flip_canvas : bool, default False
        If True, flip the canvas vertically so that the image looks normal.

    Returns
    -------
    Image
        The image layer.
    """
    layer = _l.Image(
        image, name=name, cmap=cmap, clim=clim, backend=self._get_backend()
    )
    self.add_layer(layer)
    if flip_canvas and not self.y.flipped:
        self.y.flipped = True
    return layer
add_hist(data, *, bins='auto', limits=None, name=None, shape='bars', kind='count', orient='vertical', color=None, width=None, style=None)

Add data as a histogram.

canvas.add_hist(np.random.normal(size=100), bins=12)

Parameters:

Name Type Description Default
data array - like

1D Array of data.

required
bins int or 1D array-like

Bins of the histogram. This parameter will directly be passed to np.histogram.

"auto"
limits (float, float)

Limits in which histogram will be built. This parameter will equivalent to the range paraneter of np.histogram.

None
name str

Name of the layer.

None
shape ('step', 'polygon', 'bars')

Shape of the histogram. This parameter defines how to convert the data into the line nodes.

"step"
kind ('count', 'density', 'probability', 'frequency', 'percent')

Kind of the histogram.

"count"
orient str or Orientation

Orientation of the bars.

"vertical"
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None

Returns:

Type Description
Bars

The bars layer that represents the histogram.

Source code in whitecanvas\canvas\_base.py
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
def add_hist(
    self,
    data: ArrayLike1D,
    *,
    bins: HistBinType = "auto",
    limits: tuple[float, float] | None = None,
    name: str | None = None,
    shape: Literal["step", "polygon", "bars"] = "bars",
    kind: Literal["count", "density", "frequency", "percent"] = "count",
    orient: OrientationLike = "vertical",
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str | None = None,
) -> _lg.Histogram:
    """
    Add data as a histogram.

    >>> canvas.add_hist(np.random.normal(size=100), bins=12)

    Parameters
    ----------
    data : array-like
        1D Array of data.
    bins : int or 1D array-like, default "auto"
        Bins of the histogram. This parameter will directly be passed
        to `np.histogram`.
    limits : (float, float), optional
        Limits in which histogram will be built. This parameter will equivalent to
        the `range` paraneter of `np.histogram`.
    name : str, optional
        Name of the layer.
    shape : {"step", "polygon", "bars"}, default "bars"
        Shape of the histogram. This parameter defines how to convert the data into
        the line nodes.
    kind : {"count", "density", "probability", "frequency", "percent"}, optional
        Kind of the histogram.
    orient : str or Orientation, default "vertical"
        Orientation of the bars.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.

    Returns
    -------
    Bars
        The bars layer that represents the histogram.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _lg.Histogram.from_array(
        data, bins=bins, limits=limits, shape=shape, kind=kind, name=name,
        color=color, width=width, style=style, orient=orient,
        backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_hist2d(x, y, *, cmap='inferno', name=None, bins='auto', rangex=None, rangey=None, density=False)

Add a 2D histogram of given X/Y data.

x = np.random.normal(size=100) y = np.random.normal(size=200) canvas.add_hist2d(x, y)

Note that unlike add_image() method, this method does not lock the aspect ratio and flip the canvas by default.

Parameters:

Name Type Description Default
x array - like

1D Array of X data.

required
y array - like

1D Array of Y data.

required
cmap ColormapType

Colormap used for the image.

"gray"
name str

Name of the layer.

None
bins int or tuple[int, int]

Bins of the histogram of X/Y dimension respectively. If an integer is given, it will be used for both dimensions.

'auto'
rangex (float, float)

Range of x values in which histogram will be built.

None
rangey (float, float)

Range of y values in which histogram will be built.

None
density bool

If True, values of the histogram will be normalized so that the total intensity of the histogram will be 1.

False

Returns:

Type Description
Image

Image layer representing the 2D histogram.

Source code in whitecanvas\canvas\_base.py
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
def add_hist2d(
    self,
    x: ArrayLike1D,
    y: ArrayLike1D,
    *,
    cmap: ColormapType = "inferno",
    name: str | None = None,
    bins: HistBinType | tuple[HistBinType, HistBinType] = "auto",
    rangex: tuple[float, float] | None = None,
    rangey: tuple[float, float] | None = None,
    density: bool = False,
) -> _l.Image:
    """
    Add a 2D histogram of given X/Y data.

    >>> x = np.random.normal(size=100)
    >>> y = np.random.normal(size=200)
    >>> canvas.add_hist2d(x, y)

    Note that unlike `add_image()` method, this method does not lock the aspect
    ratio and flip the canvas by default.

    Parameters
    ----------
    x : array-like
        1D Array of X data.
    y : array-like
        1D Array of Y data.
    cmap : ColormapType, default "gray"
        Colormap used for the image.
    name : str, optional
        Name of the layer.
    bins : int or tuple[int, int], optional
        Bins of the histogram of X/Y dimension respectively. If an integer is given,
        it will be used for both dimensions.
    rangex : (float, float), optional
        Range of x values in which histogram will be built.
    rangey : (float, float), optional
        Range of y values in which histogram will be built.
    density : bool, default False
        If True, values of the histogram will be normalized so that the total
        intensity of the histogram will be 1.

    Returns
    -------
    Image
        Image layer representing the 2D histogram.
    """
    layer = _l.Image.build_hist(
        x, y, bins=bins, range=(rangex, rangey), density=density, name=name,
        cmap=cmap, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_hline(y, *, name=None, color=None, width=None, style=LineStyle.SOLID, alpha=1.0, antialias=True)

Add a infinite horizontal line to the canvas.

Parameters:

Name Type Description Default
y float

Y coordinate of the line.

required
name str

Name of the layer.

None
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

SOLID
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
InfLine

The infline layer.

Source code in whitecanvas\canvas\_base.py
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
def add_hline(
    self,
    y: float,
    *,
    name: str | None = None,
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str = LineStyle.SOLID,
    alpha: float = 1.0,
    antialias: bool = True,
) -> _l.InfLine:
    """
    Add a infinite horizontal line to the canvas.

    Parameters
    ----------
    y : float
        Y coordinate of the line.
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    InfLine
        The infline layer.
    """
    return self.add_infline(
        (0, y), 0, name=name, color=color, width=width, style=style, alpha=alpha,
        antialias=antialias
    )  # fmt: skip
add_image(image, *, name=None, cmap=None, clim=None, flip_canvas=True, lock_aspect=True)

Add an image layer to the canvas.

This method automatically flips the image vertically by default. add_heatmap does the similar thing with slightly different default settings.

Parameters:

Name Type Description Default
image ArrayLike

Image data. Must be 2D or 3D array. If 3D, the last dimension must be RGB(A). Note that the first dimension is the vertical axis.

required
cmap ColormapType

Colormap used for the image. If None, the theme default for image colormap will be used.

None
clim (float or None, float or None) or None

Contrast limits. If None, the limits are automatically determined by min and max of the data. You can also pass None separately to either limit to use the default behavior.

None
flip_canvas bool

If True, flip the canvas vertically so that the image looks normal.

True
lock_aspect bool

If True, lock the aspect ratio of the canvas to 1:1.

True

Returns:

Type Description
Image

The image layer.

Source code in whitecanvas\canvas\_base.py
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
def add_image(
    self,
    image: ArrayLike,
    *,
    name: str | None = None,
    cmap: ColormapType | None = None,
    clim: tuple[float | None, float | None] | None = None,
    flip_canvas: bool = True,
    lock_aspect: bool = True,
) -> _l.Image:
    """
    Add an image layer to the canvas.

    This method automatically flips the image vertically by default. `add_heatmap`
    does the similar thing with slightly different default settings.

    Parameters
    ----------
    image : ArrayLike
        Image data. Must be 2D or 3D array. If 3D, the last dimension must be
        RGB(A). Note that the first dimension is the vertical axis.
    cmap : ColormapType, optional
        Colormap used for the image. If None, the theme default for image colormap
        will be used.
    clim : (float or None, float or None) or None
        Contrast limits. If None, the limits are automatically determined by min and
        max of the data. You can also pass None separately to either limit to use
        the default behavior.
    flip_canvas : bool, default True
        If True, flip the canvas vertically so that the image looks normal.
    lock_aspect : bool, default True
        If True, lock the aspect ratio of the canvas to 1:1.

    Returns
    -------
    Image
        The image layer.
    """
    cmap = theme._default("colormap_image", cmap)
    layer = _l.Image(
        image, name=name, cmap=cmap, clim=clim, backend=self._get_backend()
    )
    self.add_layer(layer)
    if flip_canvas and not self.y.flipped:
        self.y.flipped = True
    if lock_aspect:
        self.aspect_ratio = 1.0
    return layer
add_infcurve(model, *, bounds=(-float('inf'), float('inf')), name=None, color=None, width=None, style=None, alpha=1.0, antialias=True)

Add an infinite curve to the canvas.

canvas.add_infcurve(lambda x: x ** 2) # parabola canvas.add_infcurve(lambda x, a: np.sin(a*x)).update_params(2) # parametric

Parameters:

Name Type Description Default
model callable

The model function. The first argument must be the x coordinates. Same signature as scipy.optimize.curve_fit.

required
bounds (float, float)

Lower and upper bounds that the function is defined.

(-inf, inf)
name str

Name of the layer.

None
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
InfCurve

The infcurve layer.

Source code in whitecanvas\canvas\_base.py
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
def add_infcurve(
    self,
    model: Callable[Concatenate[Any, _P], Any],
    *,
    bounds: tuple[float, float] = (-float("inf"), float("inf")),
    name: str | None = None,
    color: ColorType | None = None,
    width: float | None = None,
    style: str | LineStyle | None = None,
    alpha: float = 1.0,
    antialias: bool = True,
) -> _l.InfCurve[_P]:
    """
    Add an infinite curve to the canvas.

    >>> canvas.add_infcurve(lambda x: x ** 2)  # parabola
    >>> canvas.add_infcurve(lambda x, a: np.sin(a*x)).update_params(2)  # parametric

    Parameters
    ----------
    model : callable
        The model function. The first argument must be the x coordinates. Same
        signature as `scipy.optimize.curve_fit`.
    bounds : (float, float), default (-inf, inf)
        Lower and upper bounds that the function is defined.
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    InfCurve
        The infcurve layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.InfCurve(
        model, bounds=bounds, name=name, color=color, width=width, alpha=alpha,
        style=style, antialias=antialias, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_infline(pos=(0, 0), angle=0.0, *, name=None, color=None, width=None, style=None, alpha=1.0, antialias=True)

Add an infinitely long line to the canvas.

canvas.add_infline((0, 0), 45) # y = x canvas.add_infline((1, 0), 90) # x = 1 canvas.add_infline((0, -1), 0) # y = -1

Parameters:

Name Type Description Default
pos (float, float)

One of the points this line passes.

(0, 0)
angle float

Angle of the line in degree, defined by the counter-clockwise rotation from the x axis.

0.0
name str

Name of the layer.

None
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
InfLine

The infline layer.

Source code in whitecanvas\canvas\_base.py
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
def add_infline(
    self,
    pos: tuple[float, float] = (0, 0),
    angle: float = 0.0,
    *,
    name: str | None = None,
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str | None = None,
    alpha: float = 1.0,
    antialias: bool = True,
) -> _l.InfLine:
    """
    Add an infinitely long line to the canvas.

    >>> canvas.add_infline((0, 0), 45)  # y = x
    >>> canvas.add_infline((1, 0), 90)  # x = 1
    >>> canvas.add_infline((0, -1), 0)  # y = -1

    Parameters
    ----------
    pos : (float, float), default (0, 0)
        One of the points this line passes.
    angle : float, default 0.0
        Angle of the line in degree, defined by the counter-clockwise
        rotation from the x axis.
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    InfLine
        The infline layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.InfLine(
        pos, angle, name=name, color=color, alpha=alpha,
        width=width, style=style, antialias=antialias,
        backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_kde(data, *, bottom=0.0, name=None, orient='vertical', band_width='scott', color=None, width=None, style=None)

Add data as a band layer representing kernel density estimation (KDE).

Parameters:

Name Type Description Default
data array - like

1D data to calculate the KDE.

required
bottom float

Scalar value that define the height of the bottom line.

0.0
name str

Name of the layer, by default None

None
orient (str, Orientation)

Orientation of the KDE.

"vertical"
band_width float or str

Method to calculate the estimator bandwidth.

"scott"
color color - like

Color of the band face.

None
width float

Line width of the outline.

None
style str or LineStyle

Line style of the outline.

None

Returns:

Type Description
Kde

The KDE layer.

Source code in whitecanvas\canvas\_base.py
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
def add_kde(
    self,
    data: ArrayLike1D,
    *,
    bottom: float = 0.0,
    name: str | None = None,
    orient: OrientationLike = "vertical",
    band_width: KdeBandWidthType = "scott",
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str | None = None,
) -> _lg.Kde:
    """
    Add data as a band layer representing kernel density estimation (KDE).

    Parameters
    ----------
    data : array-like
        1D data to calculate the KDE.
    bottom : float, default 0.0
        Scalar value that define the height of the bottom line.
    name : str, optional
        Name of the layer, by default None
    orient : str, Orientation, default "vertical"
        Orientation of the KDE.
    band_width : float or str, default "scott"
        Method to calculate the estimator bandwidth.
    color : color-like, default None
        Color of the band face.
    width : float, optional
        Line width of the outline.
    style : str or LineStyle, optional
        Line style of the outline.

    Returns
    -------
    Kde
        The KDE layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)

    layer = _lg.Kde.from_array(
        data, bottom=bottom, scale=1, band_width=band_width, name=name,
        orient=orient, color=color, width=width, style=style,
        backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_layer(layer, *, over=None, under=None)

Add a layer to the canvas.

Source code in whitecanvas\canvas\_base.py
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
def add_layer(
    self,
    layer: _L,
    *,
    over: _l.Layer | Iterable[_l.Layer] | None = None,
    under: _l.Layer | Iterable[_l.Layer] | None = None,
) -> _L:
    """Add a layer to the canvas."""
    if over is None and under is None:
        if isinstance(layer, _l.LayerStack):
            self.dims.in_axes(layer.axis_names)  # add multidims
        self.layers.append(layer)
    elif over is not None:
        if under is not None:
            raise ValueError("Cannot specify both `over` and `under`")
        if isinstance(over, _l.Layer):
            idx = self.layers.index(over)
        else:
            idx = max([self.layers.index(l) for l in over])
        self.layers.insert(idx + 1, layer)
    else:
        if isinstance(under, _l.Layer):
            idx = self.layers.index(under)
        else:
            idx = min([self.layers.index(l) for l in under])
        self.layers.insert(idx, layer)
    return layer
add_legend(layers=None, *, location='top_right', title=None, name_filter=not_starts_with_underscore)

Add legend items to the canvas.

Parameters:

Name Type Description Default
layers sequence of layer or str

Which item to be added to the legend. If str is given, it will be converted into a legend title label.

None
location LegendLocation

Location of the legend. Can be combination of "top", "bottom", "left", "right" and "center" (e.g., "top_left", "center_right").

       (2) left  center right
             v     v     v
  (1)     ┌─────────────────┐
   top -> │                 │
center -> │     canvas      │
bottom -> │                 │
          └─────────────────┘

Some backends also support adding legend outside the canvas. Following strings suffixed with "_side" can be used in combination with those strings above (e.g., "bottom_side_rigth", "right_side_top").

   top_side -> ┌────────┐
            ┌──┼────────┼──┐
left_side ->│  │ canvas │  │<- right_side
            └──┼────────┼──┘
bottom_side -> └────────┘
"top_right"
title str

If given, title label will be added as the first legend item.

None
name_filter callable

A callable that returns True if the name should be included in the legend.

not_starts_with_underscore
Source code in whitecanvas\canvas\_base.py
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def add_legend(
    self,
    layers: Sequence[str | _l.Layer] | None = None,
    *,
    location: Location | LocationStr = "top_right",
    title: str | None = None,
    name_filter: Callable[[str], bool] = not_starts_with_underscore,
):
    """
    Add legend items to the canvas.

    Parameters
    ----------
    layers : sequence of layer or str, optional
        Which item to be added to the legend. If str is given, it will be converted
        into a legend title label.
    location : LegendLocation, default "top_right"
        Location of the legend. Can be combination of "top", "bottom", "left",
        "right" and "center" (e.g., "top_left", "center_right").

        ```
               (2) left  center right
                     v     v     v
          (1)     ┌─────────────────┐
           top -> │                 │
        center -> │     canvas      │
        bottom -> │                 │
                  └─────────────────┘
        ```

        Some backends also support adding legend outside the canvas. Following
        strings suffixed with "_side" can be used in combination with those strings
        above (e.g., "bottom_side_rigth", "right_side_top").

        ```
           top_side -> ┌────────┐
                    ┌──┼────────┼──┐
        left_side ->│  │ canvas │  │<- right_side
                    └──┼────────┼──┘
        bottom_side -> └────────┘
        ```
    title : str, optional
        If given, title label will be added as the first legend item.
    name_filter : callable, default not_starts_with_underscore
        A callable that returns True if the name should be included in the legend.
    """
    if layers is None:
        layers = list(self.layers)
    if title is not None:
        layers = [title, *layers]
    location = Location.parse(location)

    items = list[tuple[str, _legend.LegendItem]]()
    for layer in layers:
        if isinstance(layer, str):
            items.append((layer, _legend.TitleItem()))
        elif isinstance(layer, _l.Layer):
            if not name_filter(layer.name):
                continue
            items.append((layer.name, layer._as_legend_item()))
        else:
            raise TypeError(f"Expected a list of layer or str, got {type(layer)}.")
    self._canvas()._plt_make_legend(items, location)
add_line(*args, name=None, color=None, width=None, style=None, alpha=1.0, antialias=True)

Add a Line layer to the canvas.

canvas.add_line(y, ...) canvas.add_line(x, y, ...)

Parameters:

Name Type Description Default
name str

Name of the layer.

None
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
Line

The line layer.

Source code in whitecanvas\canvas\_base.py
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
def add_line(
    self,
    *args,
    name=None,
    color=None,
    width=None,
    style=None,
    alpha=1.0,
    antialias=True,
):
    """
    Add a Line layer to the canvas.

    >>> canvas.add_line(y, ...)
    >>> canvas.add_line(x, y, ...)

    Parameters
    ----------
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    Line
        The line layer.
    """
    xdata, ydata = normalize_xy(*args)
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.Line(
        xdata, ydata, name=name, color=color, width=width, style=style,
        alpha=alpha, antialias=antialias, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_markers(*args, name=None, symbol=None, size=None, color=None, alpha=1.0, hatch=None)

Add markers (scatter plot).

canvas.add_markers(x, y) # standard usage canvas.add_markers(y) # use 0, 1, ... for the x values

Parameters:

Name Type Description Default
name str

Name of the layer.

None
symbol str or Symbol

Marker symbols. Use the theme default if not specified.

None
size float

Marker size. Use the theme default if not specified.

None
color color - like

Color of the marker faces.

None
alpha float

Alpha channel of the marker faces.

1.0
hatch str or FacePattern

Pattern of the marker faces. Use the theme default if not specified.

None

Returns:

Type Description
Markers

The markers layer.

Source code in whitecanvas\canvas\_base.py
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def add_markers(
    self,
    *args,
    name=None,
    symbol=None,
    size=None,
    color=None,
    alpha=1.0,
    hatch=None,
):
    """
    Add markers (scatter plot).

    >>> canvas.add_markers(x, y)  # standard usage
    >>> canvas.add_markers(y)  # use 0, 1, ... for the x values

    Parameters
    ----------
    name : str, optional
        Name of the layer.
    symbol : str or Symbol, optional
        Marker symbols. Use the theme default if not specified.
    size : float, optional
        Marker size. Use the theme default if not specified.
    color : color-like, optional
        Color of the marker faces.
    alpha : float, default 1.0
        Alpha channel of the marker faces.
    hatch : str or FacePattern, optional
        Pattern of the marker faces. Use the theme default if not specified.

    Returns
    -------
    Markers
        The markers layer.
    """
    xdata, ydata = normalize_xy(*args)
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    symbol = theme._default("markers.symbol", symbol)
    size = theme._default("markers.size", size)
    hatch = theme._default("markers.hatch", hatch)
    layer = _l.Markers(
        xdata, ydata, name=name, symbol=symbol, size=size, color=color,
        alpha=alpha, hatch=hatch, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_rects(coords, *, name=None, color=None, alpha=1.0, hatch=None)

Add rectangles.

Parameters:

Name Type Description Default
coords ArrayLike

(N, 4) array of coordinates. Each row should contain (x0, y0, x1, y1), where (x0, y0) is the bottom-left corner and (x1, y1) is the top-right corner.

required
name str

Name of the layer.

None
color color - like

Color of the bars.

None
alpha float

Alpha channel of the rectangles.

1.0
hatch str or FacePattern

Pattern of the rectangle faces.

FacePattern.SOLID

Returns:

Type Description
Rects[ConstFace, ConstEdge]

description

Source code in whitecanvas\canvas\_base.py
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
def add_rects(
    self,
    coords: ArrayLike,
    *,
    name: str | None = None,
    color: ColorType | None = None,
    alpha: float = 1.0,
    hatch: str | Hatch | None = None,
) -> _l.Rects[_mixin.ConstFace, _mixin.ConstEdge]:
    """
    Add rectangles.

    Parameters
    ----------
    coords : ArrayLike
        (N, 4) array of coordinates. Each row should contain (x0, y0, x1, y1), where
        (x0, y0) is the bottom-left corner and (x1, y1) is the top-right corner.
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    alpha : float, default 1.0
        Alpha channel of the rectangles.
    hatch : str or FacePattern, default FacePattern.SOLID
        Pattern of the rectangle faces.

    Returns
    -------
    _l.Rects[_mixin.ConstFace, _mixin.ConstEdge]
        _description_
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    hatch = theme._default("bars.hatch", hatch)
    layer = _l.Rects(
        coords, name=name, color=color, alpha=alpha, hatch=hatch,
        backend=self._get_backend()
    )  # fmt: skip
    return self.add_layer(layer)
add_rug(events, *, low=0.0, high=1.0, name=None, orient='vertical', color='black', width=1.0, style=LineStyle.SOLID, antialias=True, alpha=1.0)

Add input data as a rug plot.

canvas.add_rug([2, 4, 5, 8, 11])

  │ ││  │   │
──┴─┴┴──┴───┴──> x
  2 45  8   11

Parameters:

Name Type Description Default
events array - like

A 1D array of events.

required
low float

The lower bound of the rug lines.

0.0
high float

The upper bound of the rug lines.

1.0
name str

Name of the layer.

None
orient str or Orientation

Orientation of the errorbars. If vertical, rug lines will be parallel to the y axis.

"vertical"
color color - like

Color of the bars.

'black'
width float

Line width.

1.0
style str or LineStyle

Line style.

LineStyle.SOLID
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
Rug

The rug layer.

Source code in whitecanvas\canvas\_base.py
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
def add_rug(
    self,
    events: ArrayLike1D,
    *,
    low: float = 0.0,
    high: float = 1.0,
    name: str | None = None,
    orient: OrientationLike = "vertical",
    color: ColorType = "black",
    width: float = 1.0,
    style: LineStyle | str = LineStyle.SOLID,
    antialias: bool = True,
    alpha: float = 1.0,
) -> _l.Rug:
    """
    Add input data as a rug plot.

    >>> canvas.add_rug([2, 4, 5, 8, 11])

    ```
      │ ││  │   │
    ──┴─┴┴──┴───┴──> x
      2 45  8   11
    ```

    Parameters
    ----------
    events : array-like
        A 1D array of events.
    low : float, default 0.0
        The lower bound of the rug lines.
    high : float, default 1.0
        The upper bound of the rug lines.
    name : str, optional
        Name of the layer.
    orient : str or Orientation, default "vertical"
        Orientation of the errorbars. If vertical, rug lines will be parallel
        to the y axis.
    color : color-like, optional
        Color of the bars.
    width : float, default 1.0
        Line width.
    style : str or LineStyle, default LineStyle.SOLID
        Line style.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    Rug
        The rug layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    layer = _l.Rug(
        events, low=low, high=high, name=name, color=color, alpha=alpha,
        width=width, style=style, antialias=antialias, orient=orient,
        backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_spans(spans, *, name=None, orient='vertical', color='blue', alpha=0.4, hatch=Hatch.SOLID)

Add spans that extends infinitely.

canvas.add_spans([[5, 10], [15, 20]])

:::: ::::
───5────10────15───20─────>
:::: ::::
:::: ::::

Parameters:

Name Type Description Default
spans (N, 2) array-like

Array that contains the start and end points of the spans.

required
name str

Name of the layer.

None
orient str or Orientation

Orientation of the bars.

"vertical"
color color - like

Color of the bars.

'blue'
alpha float

Alpha channel of the bars.

0.4
hatch str or FacePattern

Pattern of the bar faces.

FacePattern.SOLID

Returns:

Type Description
Spans

The spans layer.

Source code in whitecanvas\canvas\_base.py
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
def add_spans(
    self,
    spans: ArrayLike,
    *,
    name: str | None = None,
    orient: OrientationLike = "vertical",
    color: ColorType = "blue",
    alpha: float = 0.4,
    hatch: str | Hatch = Hatch.SOLID,
) -> _l.Spans:
    """
    Add spans that extends infinitely.

    >>> canvas.add_spans([[5, 10], [15, 20]])

       |::::|     |::::|
       |::::|     |::::|
    ───5────10────15───20─────>
       |::::|     |::::|
       |::::|     |::::|

    Parameters
    ----------
    spans : (N, 2) array-like
        Array that contains the start and end points of the spans.
    name : str, optional
        Name of the layer.
    orient : str or Orientation, default "vertical"
        Orientation of the bars.
    color : color-like, optional
        Color of the bars.
    alpha : float, default 0.4
        Alpha channel of the bars.
    hatch : str or FacePattern, default FacePattern.SOLID
        Pattern of the bar faces.

    Returns
    -------
    Spans
        The spans layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    layer = _l.Spans(
        spans, name=name, orient=orient, color=color, alpha=alpha,
        hatch=hatch, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_step(*args, name=None, where='pre', color=None, width=None, style=None, alpha=1.0, antialias=True)

Add a step plot to the canvas.

canvas.add_step(y, ...) canvas.add_step(x, y, ...)

Parameters:

Name Type Description Default
name str

Name of the layer.

None
where str or StepStyle

Where the step should be placed.

"pre"
color color - like

Color of the steps.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
LineStep

The line-step layer.

Source code in whitecanvas\canvas\_base.py
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
def add_step(
    self,
    *args,
    name=None,
    where="pre",
    color=None,
    width=None,
    style=None,
    alpha=1.0,
    antialias=True,
):
    """
    Add a step plot to the canvas.

    >>> canvas.add_step(y, ...)
    >>> canvas.add_step(x, y, ...)

    Parameters
    ----------
    name : str, optional
        Name of the layer.
    where : str or StepStyle, default "pre"
        Where the step should be placed.
    color : color-like, optional
        Color of the steps.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    LineStep
        The line-step layer.
    """
    xdata, ydata = normalize_xy(*args)
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.LineStep(
        xdata, ydata, name=name, color=color, width=width, style=style, where=where,
        alpha=alpha, antialias=antialias, backend=self._get_backend()
    )  # fmt: skip
    return self.add_layer(layer)
add_text(x, y, string, *, color='black', size=12, rotation=0.0, anchor=Alignment.BOTTOM_LEFT, family=None)

Add a text layer to the canvas.

canvas.add_text([0, 0], [1, 1], ["text-0", "text-1]) canvas.add_text(...).with_face(color="red") # with background canvas.add_text(...).with_edge(color="red") # with outline

Parameters:

Name Type Description Default
x float or array - like

X position(s) of the text.

required
y float or array - like

Y position(s) of the text.

required
string str or list[str]

Text string to display.

required
color ColorType

Color of the text string.

'black'
size float

Point size of the text.

12
rotation float

Rotation angle of the text in degrees.

0.0
anchor str or Alignment

Anchor position of the text. The anchor position will be the coordinate given by (x, y).

Alignment.BOTTOM_LEFT
family str

Font family of the text.

None

Returns:

Type Description
Texts

The text layer.

Source code in whitecanvas\canvas\_base.py
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
def add_text(
    self,
    x,
    y,
    string,
    *,
    color="black",
    size=12,
    rotation=0.0,
    anchor=Alignment.BOTTOM_LEFT,
    family=None,
):
    """
    Add a text layer to the canvas.

    >>> canvas.add_text([0, 0], [1, 1], ["text-0", "text-1])
    >>> canvas.add_text(...).with_face(color="red")  # with background
    >>> canvas.add_text(...).with_edge(color="red")  # with outline

    Parameters
    ----------
    x : float or array-like
        X position(s) of the text.
    y : float or array-like
        Y position(s) of the text.
    string : str or list[str]
        Text string to display.
    color : ColorType, optional
        Color of the text string.
    size : float, default 12
        Point size of the text.
    rotation : float, default 0.0
        Rotation angle of the text in degrees.
    anchor : str or Alignment, default Alignment.BOTTOM_LEFT
        Anchor position of the text. The anchor position will be the coordinate
        given by (x, y).
    family : str, optional
        Font family of the text.

    Returns
    -------
    Texts
        The text layer.
    """
    if is_real_number(x) and is_real_number(y) and isinstance(string, str):
        x, y, string = [x], [y], [string]
    x_, y_ = normalize_xy(x, y)
    if isinstance(string, str):
        string = [string] * x_.size
    elif len(string) != x_.size:
        raise ValueError("Expected string to have the same size as x/y")
    layer = _l.Texts(
        x_, y_, string, color=color, size=size, rotation=rotation, anchor=anchor,
        family=family, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_vectors(x, y, vx, vy, *, name=None, color=None, width=None, style=None, alpha=1.0, antialias=True)

Add a vector field to the canvas.

canvas.add_vectors(x, y, vx, vy)

Parameters:

Name Type Description Default
x array - like

X coordinates of the vectors.

required
y array - like

Y coordinates of the vectors.

required
vx array - like

X components of the vectors.

required
vy array - like

Y components of the vectors.

required
name str

Name of the layer.

None
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

None
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
Vectors

The vectors layer.

Source code in whitecanvas\canvas\_base.py
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
def add_vectors(
    self,
    x: ArrayLike1D,
    y: ArrayLike1D,
    vx: ArrayLike1D,
    vy: ArrayLike1D,
    *,
    name: str | None = None,
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str | None = None,
    alpha: float = 1.0,
    antialias: bool = True,
) -> _l.Vectors:
    """
    Add a vector field to the canvas.

    >>> canvas.add_vectors(x, y, vx, vy)

    Parameters
    ----------
    x : array-like
        X coordinates of the vectors.
    y : array-like
        Y coordinates of the vectors.
    vx : array-like
        X components of the vectors.
    vy : array-like
        Y components of the vectors.
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    Vectors
        The vectors layer.
    """
    name = self._coerce_name(name)
    color = self._generate_colors(color)
    width = theme._default("line.width", width)
    style = theme._default("line.style", style)
    layer = _l.Vectors(
        as_array_1d(x, dtype=np.float32), as_array_1d(y, dtype=np.float32),
        as_array_1d(vx, dtype=np.float32), as_array_1d(vy, dtype=np.float32),
        name=name, color=color, width=width, style=style,
        alpha=alpha, antialias=antialias, backend=self._get_backend(),
    )  # fmt: skip
    return self.add_layer(layer)
add_vline(x, *, name=None, color=None, width=None, style=LineStyle.SOLID, alpha=1.0, antialias=True)

Add a infinite vertical line to the canvas.

Parameters:

Name Type Description Default
x float

X coordinate of the line.

required
name str

Name of the layer.

None
color color - like

Color of the bars.

None
width float

Line width. Use the theme default if not specified.

None
style str or LineStyle

Line style. Use the theme default if not specified.

SOLID
alpha float

Alpha channel of the line.

1.0
antialias bool

Antialiasing of the line.

True

Returns:

Type Description
InfLine

The infline layer.

Source code in whitecanvas\canvas\_base.py
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
def add_vline(
    self,
    x: float,
    *,
    name: str | None = None,
    color: ColorType | None = None,
    width: float | None = None,
    style: LineStyle | str = LineStyle.SOLID,
    alpha: float = 1.0,
    antialias: bool = True,
) -> _l.InfLine:
    """
    Add a infinite vertical line to the canvas.

    Parameters
    ----------
    x : float
        X coordinate of the line.
    name : str, optional
        Name of the layer.
    color : color-like, optional
        Color of the bars.
    width : float, optional
        Line width. Use the theme default if not specified.
    style : str or LineStyle, optional
        Line style. Use the theme default if not specified.
    alpha : float, default 1.0
        Alpha channel of the line.
    antialias : bool, default True
        Antialiasing of the line.

    Returns
    -------
    InfLine
        The infline layer.
    """
    return self.add_infline(
        (x, 0), 90, name=name, color=color, width=width, style=style, alpha=alpha,
        antialias=antialias,
    )  # fmt: skip
autoscale(xpad=None, ypad=None)

Autoscale the canvas to fit the contents.

Parameters:

Name Type Description Default
xpad float or (float, float)

Padding in the x direction.

None
ypad float or (float, float)

Padding in the y direction.

None
Source code in whitecanvas\canvas\_base.py
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def autoscale(
    self,
    xpad: float | tuple[float, float] | None = None,
    ypad: float | tuple[float, float] | None = None,
) -> tuple[float, float, float, float]:
    """
    Autoscale the canvas to fit the contents.

    Parameters
    ----------
    xpad : float or (float, float), optional
        Padding in the x direction.
    ypad : float or (float, float), optional
        Padding in the y direction.
    """
    ar = np.stack([layer.bbox_hint() for layer in self.layers], axis=0)
    xmin = np.min(ar[:, 0])
    xmax = np.max(ar[:, 1])
    ymin = np.min(ar[:, 2])
    ymax = np.max(ar[:, 3])
    x0, x1 = self.x.lim
    y0, y1 = self.y.lim
    if np.isnan(xmin):
        xmin = x0
    if np.isnan(xmax):
        xmax = x1
    if np.isnan(ymin):
        ymin = y0
    if np.isnan(ymax):
        ymax = y1
    if xpad is not None:
        xrange = xmax - xmin
        if is_real_number(xpad):
            dx0 = dx1 = xpad * xrange
        else:
            dx0, dx1 = xpad[0] * xrange, xpad[1] * xrange
        xmin -= dx0
        xmax += dx1
    if ypad is not None:
        yrange = ymax - ymin
        if is_real_number(ypad):
            dy0 = dy1 = ypad * yrange
        else:
            dy0, dy1 = ypad[0] * yrange, ypad[1] * yrange
        ymin -= dy0
        ymax += dy1
    small_diff = 1e-6
    if xmax - xmin < small_diff:
        xmin -= 0.05
        xmax += 0.05
    if ymax - ymin < small_diff:
        ymin -= 0.05
        ymax += 0.05
    self.x.lim = xmin, xmax
    self.y.lim = ymin, ymax
    return xmin, xmax, ymin, ymax
cat(data, x=None, y=None, *, update_labels=True)

Categorize input data for plotting.

This method provides categorical plotting methods for the input data. Methods are very similar to seaborn and plotly.express.

Parameters:

Name Type Description Default
data tabular data

Any categorizable data. Currently, dict, pandas.DataFrame, and polars.DataFrame are supported.

required
x str

Name of the column that will be used for the x-axis. Must be numerical.

None
y str

Name of the column that will be used for the y-axis. Must be numerical.

None
update_labels bool

If True, update the x/y labels to the corresponding names.

True

Returns:

Type Description
CatPlotter

Plotter object.

Source code in whitecanvas\canvas\_base.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
def cat(
    self,
    data: _DF,
    x: str | None = None,
    y: str | None = None,
    *,
    update_labels: bool = True,
) -> _df.CatPlotter[Self, _DF]:
    """
    Categorize input data for plotting.

    This method provides categorical plotting methods for the input data.
    Methods are very similar to `seaborn` and `plotly.express`.

    Parameters
    ----------
    data : tabular data
        Any categorizable data. Currently, dict, pandas.DataFrame, and
        polars.DataFrame are supported.
    x : str, optional
        Name of the column that will be used for the x-axis. Must be numerical.
    y : str, optional
        Name of the column that will be used for the y-axis. Must be numerical.
    update_labels : bool, default True
        If True, update the x/y labels to the corresponding names.

    Returns
    -------
    CatPlotter
        Plotter object.
    """
    plotter = _df.CatPlotter(self, data, x, y, update_labels=update_labels)
    return plotter
cat_x(data, x=None, y=None, *, update_labels=True, numeric_axis=False)

Categorize input data for plotting with x-axis as a categorical axis.

Parameters:

Name Type Description Default
data tabular data

Any categorizable data. Currently, dict, pandas.DataFrame, and polars.DataFrame are supported.

required
x str or sequence of str

Name of the column(s) that will be used for the x-axis. Must be categorical.

None
y str

Name of the column that will be used for the y-axis. Must be numerical.

None
update_labels bool

If True, update the x/y labels to the corresponding names.

True
numeric_axis bool

If True, the x-axis will be treated as a numerical axis. For example, if categories are [2, 4, 8], the x coordinates will be mapped to [0, 1, 2] by default, but if this option is True, the x coordinates will be [2, 4, 8].

False

Returns:

Type Description
XCatPlotter

Plotter object.

Source code in whitecanvas\canvas\_base.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
def cat_x(
    self,
    data: _DF,
    x: str | Sequence[str] | None = None,
    y: str | None = None,
    *,
    update_labels: bool = True,
    numeric_axis: bool = False,
) -> _df.XCatPlotter[Self, _DF]:
    """
    Categorize input data for plotting with x-axis as a categorical axis.

    Parameters
    ----------
    data : tabular data
        Any categorizable data. Currently, dict, pandas.DataFrame, and
        polars.DataFrame are supported.
    x : str or sequence of str, optional
        Name of the column(s) that will be used for the x-axis. Must be categorical.
    y : str, optional
        Name of the column that will be used for the y-axis. Must be numerical.
    update_labels : bool, default True
        If True, update the x/y labels to the corresponding names.
    numeric_axis : bool, default False
        If True, the x-axis will be treated as a numerical axis. For example, if
        categories are [2, 4, 8], the x coordinates will be mapped to [0, 1, 2] by
        default, but if this option is True, the x coordinates will be [2, 4, 8].

    Returns
    -------
    XCatPlotter
        Plotter object.
    """
    return _df.XCatPlotter(self, data, x, y, update_labels, numeric=numeric_axis)
cat_xy(data, x, y, *, update_labels=True)

Categorize input data for plotting with both axes as categorical.

Parameters:

Name Type Description Default
data tabular data

Any categorizable data. Currently, dict, pandas.DataFrame, and polars.DataFrame are supported.

required
x str or sequence of str

Name of the column(s) that will be used for the x-axis. Must be categorical.

required
y str or sequence of str

Name of the column(s) that will be used for the y-axis. Must be categorical.

required
update_labels bool

If True, update the x/y labels to the corresponding names.

True

Returns:

Type Description
XYCatPlotter

Plotter object

Source code in whitecanvas\canvas\_base.py
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def cat_xy(
    self,
    data: _DF,
    x: str | Sequence[str],
    y: str | Sequence[str],
    *,
    update_labels: bool = True,
) -> _df.XYCatPlotter[Self, _DF]:
    """
    Categorize input data for plotting with both axes as categorical.

    Parameters
    ----------
    data : tabular data
        Any categorizable data. Currently, dict, pandas.DataFrame, and
        polars.DataFrame are supported.
    x : str or sequence of str, optional
        Name of the column(s) that will be used for the x-axis. Must be categorical.
    y : str or sequence of str, optional
        Name of the column(s) that will be used for the y-axis. Must be categorical.
    update_labels : bool, default True
        If True, update the x/y labels to the corresponding names.

    Returns
    -------
    XYCatPlotter
        Plotter object
    """
    return _df.XYCatPlotter(self, data, x, y, update_labels)
cat_y(data, x=None, y=None, *, update_labels=True, numeric_axis=False)

Categorize input data for plotting with y-axis as a categorical axis.

Parameters:

Name Type Description Default
data tabular data

Any categorizable data. Currently, dict, pandas.DataFrame, and polars.DataFrame are supported.

required
x str

Name of the column that will be used for the x-axis. Must be numerical.

None
y str or sequence of str

Name of the column(s) that will be used for the y-axis. Must be categorical.

None
update_labels bool

If True, update the x/y labels to the corresponding names.

True
numeric_axis bool

If True, the x-axis will be treated as a numerical axis. For example, if categories are [2, 4, 8], the y coordinates will be mapped to [0, 1, 2] by default, but if this option is True, the y coordinates will be [2, 4, 8].

False

Returns:

Type Description
YCatPlotter

Plotter object

Source code in whitecanvas\canvas\_base.py
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
def cat_y(
    self,
    data: _DF,
    x: str | None = None,
    y: str | Sequence[str] | None = None,
    *,
    update_labels: bool = True,
    numeric_axis: bool = False,
) -> _df.YCatPlotter[Self, _DF]:
    """
    Categorize input data for plotting with y-axis as a categorical axis.

    Parameters
    ----------
    data : tabular data
        Any categorizable data. Currently, dict, pandas.DataFrame, and
        polars.DataFrame are supported.
    x : str, optional
        Name of the column that will be used for the x-axis. Must be numerical.
    y : str or sequence of str, optional
        Name of the column(s) that will be used for the y-axis. Must be categorical.
    update_labels : bool, default True
        If True, update the x/y labels to the corresponding names.
    numeric_axis : bool, default False
        If True, the x-axis will be treated as a numerical axis. For example, if
        categories are [2, 4, 8], the y coordinates will be mapped to [0, 1, 2] by
        default, but if this option is True, the y coordinates will be [2, 4, 8].

    Returns
    -------
    YCatPlotter
        Plotter object
    """
    return _df.YCatPlotter(self, data, y, x, update_labels, numeric=numeric_axis)
fit(layer)

The fit plotter namespace.

Source code in whitecanvas\canvas\_base.py
697
698
699
def fit(self, layer: _l.DataBoundLayer[_P]) -> FitPlotter[Self, _P]:
    """The fit plotter namespace."""
    return FitPlotter(self, layer)
group_layers(layers, *more_layers, name=None)

Group layers.

Parameters:

Name Type Description Default
layers iterable of Layer

Layers to group.

required

Returns:

Type Description
LayerGroup

The grouped layer.

Source code in whitecanvas\canvas\_base.py
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
def group_layers(self, layers, *more_layers, name=None):
    """
    Group layers.

    Parameters
    ----------
    layers : iterable of Layer
        Layers to group.

    Returns
    -------
    LayerGroup
        The grouped layer.
    """
    if more_layers:
        if not isinstance(layers, _l.Layer):
            raise TypeError("No overload matches the arguments")
        layers = [layers, *more_layers]
    return _lg.LayerTuple(layers, name=name)
install_inset(*args, palette=None, **kwargs)

Install a new canvas pointing to an inset of the current canvas.

canvas.install_inset(left=0.1, right=0.9, bottom=0.1, top=0.9) canvas.install_inset([0.1, 0.9, 0.1, 0.9]) # or a sequence

Source code in whitecanvas\canvas\_base.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
def install_inset(self, *args, palette=None, **kwargs) -> Canvas:
    """
    Install a new canvas pointing to an inset of the current canvas.

    >>> canvas.install_inset(left=0.1, right=0.9, bottom=0.1, top=0.9)
    >>> canvas.install_inset([0.1, 0.9, 0.1, 0.9])  # or a sequence
    """
    # normalize input
    if len(args) == 1 and not kwargs:
        rect = args[0]
        if not isinstance(rect, Rect):
            rect = Rect.with_check(*rect)
    else:
        rect = Rect.with_check(*args, **kwargs)
    try:
        new = self._canvas()._plt_inset(rect)
    except AttributeError:
        raise NotImplementedError(
            f"Backend {self._get_backend()} does not support `install_inset`"
        ) from None
    canvas = Canvas.from_backend(new, palette=palette, backend=self._get_backend())
    canvas._init_canvas()
    return canvas
install_second_x(*, palette=None)

Create a twin canvas that has a secondary x-axis and shared y-axis.

Source code in whitecanvas\canvas\_base.py
365
366
367
368
369
370
371
372
373
374
375
def install_second_x(self, *, palette: ColormapType | None = None) -> Canvas:
    """Create a twin canvas that has a secondary x-axis and shared y-axis."""
    try:
        new = self._canvas()._plt_twiny()
    except AttributeError:
        raise NotImplementedError(
            f"Backend {self._get_backend()} does not support `install_second_x`."
        ) from None
    canvas = Canvas.from_backend(new, palette=palette, backend=self._get_backend())
    canvas._init_canvas()
    return canvas
install_second_y(*, palette=None)

Create a twin canvas that has a secondary y-axis and shared x-axis.

Source code in whitecanvas\canvas\_base.py
377
378
379
380
381
382
383
384
385
386
387
def install_second_y(self, *, palette: ColormapType | None = None) -> Canvas:
    """Create a twin canvas that has a secondary y-axis and shared x-axis."""
    try:
        new = self._canvas()._plt_twinx()
    except AttributeError:
        raise NotImplementedError(
            f"Backend {self._get_backend()} does not support `install_second_y`."
        ) from None
    canvas = Canvas.from_backend(new, palette=palette, backend=self._get_backend())
    canvas._init_canvas()
    return canvas
stack_over(layer)

Stack new data over the existing layer.

For example following code

bars_0 = canvas.add_bars(x, y0) bars_1 = canvas.stack_over(bars_0).add(y1) bars_2 = canvas.stack_over(bars_1).add(y2)

will result in a bar plot like this

 ┌───┐
 ├───│┌───┐
 │   │├───│
 ├───│├───│
─┴───┴┴───┴─
Source code in whitecanvas\canvas\_base.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def stack_over(self, layer: _L0) -> StackOverPlotter[Self, _L0]:
    """
    Stack new data over the existing layer.

    For example following code

    >>> bars_0 = canvas.add_bars(x, y0)
    >>> bars_1 = canvas.stack_over(bars_0).add(y1)
    >>> bars_2 = canvas.stack_over(bars_1).add(y2)

    will result in a bar plot like this

    ```
     ┌───┐
     ├───│┌───┐
     │   │├───│
     ├───│├───│
    ─┴───┴┴───┴─
    ```
    """
    if not isinstance(layer, (_l.Bars, _l.Band, _lg.StemPlot, _lg.LabeledBars)):
        raise TypeError(
            f"Only Bars, StemPlot and Band are supported as an input, "
            f"got {type(layer)!r}."
        )
    return StackOverPlotter(self, layer)
update_axes(*, visible=None, color=None)

Update axes appearance.

Parameters:

Name Type Description Default
visible bool

Whether to show the axes.

None
color color - like

Color of the axes.

None
Source code in whitecanvas\canvas\_base.py
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def update_axes(
    self,
    *,
    visible: bool | None = None,
    color: ColorType | None = None,
):
    """
    Update axes appearance.

    Parameters
    ----------
    visible : bool, optional
        Whether to show the axes.
    color : color-like, optional
        Color of the axes.
    """
    if visible is not None:
        self.x.ticks.visible = self.y.ticks.visible = visible
    if color is not None:
        self.x.color = self.y.color = color
        self.x.ticks.color = self.y.ticks.color = color
        self.x.label.color = self.y.label.color = color
    return self
update_font(size=None, color=None, family=None)

Update all the fonts, including the title, x/y labels and x/y tick labels.

Parameters:

Name Type Description Default
size float

New font size.

None
color color - like

New font color.

None
family str

New font family.

None
Source code in whitecanvas\canvas\_base.py
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
def update_font(
    self,
    size: float | None = None,
    color: ColorType | None = None,
    family: str | None = None,
) -> Self:
    """
    Update all the fonts, including the title, x/y labels and x/y tick labels.

    Parameters
    ----------
    size : float, optional
        New font size.
    color : color-like, optional
        New font color.
    family : str, optional
        New font family.
    """
    if size is not None:
        self.title.size = self.x.label.size = self.y.label.size = size
        self.x.ticks.size = self.y.ticks.size = size
    if family is not None:
        self.title.family = self.x.label.family = self.y.label.family = family
        self.x.ticks.family = self.y.ticks.family = family
    if color is not None:
        self.title.color = self.x.label.color = self.y.label.color = color
        self.x.ticks.color = self.y.ticks.color = color
    return self
update_labels(title=None, x=None, y=None)

Helper function to update the title, x, and y labels.

from whitecanvas import new_canvas canvas = new_canvas("matplotlib").update_labels("Title", "X", "Y")

Source code in whitecanvas\canvas\_base.py
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def update_labels(
    self,
    title: str | None = None,
    x: str | None = None,
    y: str | None = None,
) -> Self:
    """
    Helper function to update the title, x, and y labels.

    >>> from whitecanvas import new_canvas
    >>> canvas = new_canvas("matplotlib").update_labels("Title", "X", "Y")
    """
    if title is not None:
        self.title.text = title
        self.title.visible = True
    if x is not None:
        self.x.label.text = x
        self.x.label.visible = True
    if y is not None:
        self.y.label.text = y
        self.y.label.visible = True
    return self

CanvasGrid

Source code in whitecanvas\canvas\_grid.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
class CanvasGrid(_Serializable):
    _CURRENT_INSTANCE: CanvasGrid | None = None
    events: GridEvents

    def __init__(
        self,
        heights: list[int],
        widths: list[int],
        *,
        backend: Backend | str | None = None,
    ) -> None:
        self._heights = heights
        self._widths = widths
        self._backend = Backend(backend)
        self._backend_object = self._create_backend()
        self._canvas_array = np.empty((len(heights), len(widths)), dtype=object)
        self._canvas_array.fill(None)

        # link axes
        self._x_linked = False
        self._y_linked = False
        self._x_linker_ref = None
        self._y_linker_ref = None

        # update settings
        theme = get_theme()
        self.background_color = theme.background_color
        self.size = theme.canvas_size
        self.events = GridEvents()
        self.__class__._CURRENT_INSTANCE = self

    @property
    def shape(self) -> tuple[int, int]:
        """The (row, col) shape of the grid"""
        return self._canvas_array.shape

    def link_x(self, *, future: bool = True, hide_ticks: bool = True) -> Self:
        """
        Link all the x-axes of the canvases in the grid.

        >>> from whitecanvas import new_grid
        >>> g = new_grid(2, 2).link_x()  # link x-axes of all canvases

        Parameters
        ----------
        future : bool, default True
            If Ture, all the canvases added in the future will also be linked. Only link
            the existing canvases if False.
        """
        if self._x_linker_ref is not None:
            self._x_linker_ref.unlink_all()  # initialize linker
        to_link = []
        for (_r, _), _canvas in self._iter_canvas():
            to_link.append(_canvas.x)
            if hide_ticks and _r != self.shape[0] - 1:
                _canvas.x.ticks.visible = False
        self._x_linker_ref = link_axes(to_link)
        if future:
            self._x_linked = True
            if hide_ticks:
                self._backend_object._plt_set_spacings(6, 6)
        return self

    def link_y(self, *, future: bool = True, hide_ticks: bool = True) -> Self:
        """
        Link all the y-axes of the canvases in the grid.

        >>> from whitecanvas import new_grid
        >>> g = new_grid(2, 2).link_y()  # link y-axes of all canvases

        Parameters
        ----------
        future : bool, default True
            If Ture, all the canvases added in the future will also be linked. Only link
            the existing canvases if False.
        """
        if self._y_linker_ref is not None:
            self._y_linker_ref.unlink_all()
        to_link = []
        for (_, _c), _canvas in self._iter_canvas():
            to_link.append(_canvas.y)
            if hide_ticks and _c != 0:
                _canvas.y.ticks.visible = False
        self._y_linker_ref = link_axes(to_link)
        if future:
            self._y_linked = True
            if hide_ticks:
                self._backend_object._plt_set_spacings(6, 6)
        return self

    def __repr__(self) -> str:
        cname = type(self).__name__
        w, h = self._size
        hex_id = hex(id(self))
        return f"<{cname} ({w:.1f} x {h:.1f}) at {hex_id}>"

    def __getitem__(self, key: tuple[int, int]) -> Canvas:
        canvas = self._canvas_array[key]
        if canvas is None:
            raise ValueError(f"Canvas at {key} is not set")
        elif isinstance(canvas, np.ndarray):
            raise ValueError(f"Cannot index by {key}.")
        return canvas

    def _create_backend(self) -> protocols.CanvasGridProtocol:
        return self._backend.get("CanvasGrid")(
            self._heights, self._widths, self._backend._app
        )

    def fill(self, palette: ColormapType | None = None) -> Self:
        """Fill the grid with canvases."""
        for _ in self._iter_add_canvas(palette=palette):
            pass
        return self

    def add_canvas(
        self,
        row: int,
        col: int,
        rowspan: int = 1,
        colspan: int = 1,
        *,
        palette: str | None = None,
    ) -> Canvas:
        """Add a canvas to the grid at the given position"""
        for idx, item in np.ndenumerate(self._canvas_array[row, col]):
            if item is not None:
                raise ValueError(f"Canvas already exists at {idx}")
        backend_canvas = self._backend_object._plt_add_canvas(
            row, col, rowspan, colspan
        )
        canvas = self._canvas_array[row, col] = Canvas.from_backend(
            backend_canvas,
            backend=self._backend,
            palette=palette,
        )
        # Now backend axes/viewbox are created, we can install mouse events
        canvas._install_mouse_events()

        # link axes if needed
        if self._x_linked:
            self._x_linker_ref.link(canvas.x)
        if self._y_linked:
            self._y_linker_ref.link(canvas.y)
        canvas.events.drawn.connect(self.events.drawn.emit, unique=True, max_args=None)
        return canvas

    def add_canvas_3d(
        self,
        row: int,
        col: int,
        rowspan: int = 1,
        colspan: int = 1,
        *,
        palette: str | None = None,
    ):
        """Add a canvas to the grid at the given position"""
        from whitecanvas.canvas.canvas3d._base import Canvas3D

        for idx, item in np.ndenumerate(self._canvas_array[row, col]):
            if item is not None:
                raise ValueError(f"Canvas already exists at {idx}")
        backend_canvas = self._backend_object._plt_add_canvas_3d(
            row, col, rowspan, colspan
        )
        canvas = self._canvas_array[row, col] = Canvas3D.from_backend(
            backend_canvas,
            backend=self._backend,
            palette=palette,
        )
        # Now backend axes/viewbox are created, we can install mouse events
        # canvas._install_mouse_events()

        # link axes if needed
        if self._x_linked:
            self._x_linker_ref.link(canvas.x)
        if self._y_linked:
            self._y_linker_ref.link(canvas.y)
        canvas.events.drawn.connect(self.events.drawn.emit, unique=True, max_args=None)
        return canvas

    def _iter_add_canvas(self, **kwargs) -> Iterator[Canvas]:
        for row in range(len(self._heights)):
            for col in range(len(self._widths)):
                yield self.add_canvas(row, col, **kwargs)

    def _iter_canvas(self) -> Iterator[tuple[tuple[int, int], Canvas]]:
        yielded: set[int] = set()
        for idx, canvas in np.ndenumerate(self._canvas_array):
            _id = id(canvas)
            if canvas is None or _id in yielded:
                continue
            yield idx, canvas
            yielded.add(_id)

    def show(self, block=False) -> None:
        """Show the grid."""
        from whitecanvas.backend._app import get_app

        # TODO: implement other event loops
        app = get_app(self._backend._app)
        _backend_app = app.get_app()
        out = self._backend_object._plt_show()

        if out is NotImplemented:
            from whitecanvas.backend._window import view

            view(self, self._backend.app)

        if block:
            # TODO: automatically block the event loop or enable ipython
            # GUI mode if needed.
            app.run_app()

    @property
    def background_color(self) -> NDArray[np.floating]:
        """Background color of the canvas."""
        return arr_color(self._backend_object._plt_get_background_color())

    @background_color.setter
    def background_color(self, color):
        self._backend_object._plt_set_background_color(arr_color(color))

    def screenshot(self) -> NDArray[np.uint8]:
        """Return a screenshot of the grid."""
        return self._backend_object._plt_screenshot()

    @property
    def size(self) -> tuple[int, int]:
        """Size in width x height."""
        return self._size

    @size.setter
    def size(self, size: tuple[int, int]):
        w, h = size
        if w <= 0 or h <= 0:
            raise ValueError("Size must be positive")
        self._size = (int(w), int(h))
        self._backend_object._plt_set_figsize(*self._size)

    @classmethod
    def from_dict(cls, d: dict[str, Any], backend: Backend | str | None = None) -> Self:
        _type_expected = f"{cls.__module__}.{cls.__name__}"
        if (_type := d.get("type")) and _type != _type_expected:
            raise ValueError(f"Expected type {_type_expected!r}, got {_type!r}")
        self = cls(d["heights"], d["widths"], backend=backend)
        if "size" in d:
            self.size = d["size"]
        if "background_color" in d:
            self.background_color = d["background_color"]
        for canvas_dict in d["canvas_array"]:
            if canvas_dict["canvas"]["type"].endswith("3D"):
                canvas = self.add_canvas_3d(canvas_dict["row"], canvas_dict["col"])
            else:
                canvas = self.add_canvas(canvas_dict["row"], canvas_dict["col"])
            canvas._update_from_dict(canvas_dict["canvas"])
        return self

    def to_dict(self) -> dict[str, Any]:
        return {
            "type": f"{type(self).__module__}.{type(self).__name__}",
            "heights": self._heights,
            "widths": self._widths,
            "size": self.size,
            "background_color": Color(self.background_color).hex,
            "canvas_array": [
                {"row": r, "col": c, "canvas": canvas.to_dict()}
                for (r, c), canvas in self._iter_canvas()
            ],
        }

    def copy(self, backend: Backend | str | None = None) -> Self:
        """Make a copy of the canvas."""
        if backend is None:
            backend = self._backend
        return self.from_dict(self.to_dict(), backend=backend)

    def _repr_png_(self):
        """Return PNG representation of the widget for QtConsole."""
        from io import BytesIO

        try:
            from imageio import imwrite
        except ImportError:
            return None

        rendered = self.screenshot()
        if rendered is not None:
            with BytesIO() as file_obj:
                imwrite(file_obj, rendered, format="png")
                file_obj.seek(0)
                return file_obj.read()
        return None

    def _ipython_display_(self, *args: Any, **kwargs: Any) -> Any:
        if hasattr(self._backend_object, "_ipython_display_"):
            return self._backend_object._ipython_display_(*args, **kwargs)
        raise NotImplementedError()

    def _repr_mimebundle_(self, *args: Any, **kwargs: Any) -> dict:
        if hasattr(self._backend_object, "_repr_mimebundle_"):
            return self._backend_object._repr_mimebundle_(*args, **kwargs)
        raise NotImplementedError()

    def _repr_html_(self, *args: Any, **kwargs: Any) -> str:
        if hasattr(self._backend_object, "_repr_html_"):
            return self._backend_object._repr_html_(*args, **kwargs)
        raise NotImplementedError()

    def to_html(self, file: str | None = None) -> str:
        """Return HTML representation of the grid."""
        html = self._backend.get("to_html")(self._backend_object)
        if file is not None:
            Path(file).write_text(html, encoding="utf-8")
        return html
background_color: NDArray[np.floating] property writable

Background color of the canvas.

shape: tuple[int, int] property

The (row, col) shape of the grid

size: tuple[int, int] property writable

Size in width x height.

add_canvas(row, col, rowspan=1, colspan=1, *, palette=None)

Add a canvas to the grid at the given position

Source code in whitecanvas\canvas\_grid.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def add_canvas(
    self,
    row: int,
    col: int,
    rowspan: int = 1,
    colspan: int = 1,
    *,
    palette: str | None = None,
) -> Canvas:
    """Add a canvas to the grid at the given position"""
    for idx, item in np.ndenumerate(self._canvas_array[row, col]):
        if item is not None:
            raise ValueError(f"Canvas already exists at {idx}")
    backend_canvas = self._backend_object._plt_add_canvas(
        row, col, rowspan, colspan
    )
    canvas = self._canvas_array[row, col] = Canvas.from_backend(
        backend_canvas,
        backend=self._backend,
        palette=palette,
    )
    # Now backend axes/viewbox are created, we can install mouse events
    canvas._install_mouse_events()

    # link axes if needed
    if self._x_linked:
        self._x_linker_ref.link(canvas.x)
    if self._y_linked:
        self._y_linker_ref.link(canvas.y)
    canvas.events.drawn.connect(self.events.drawn.emit, unique=True, max_args=None)
    return canvas
add_canvas_3d(row, col, rowspan=1, colspan=1, *, palette=None)

Add a canvas to the grid at the given position

Source code in whitecanvas\canvas\_grid.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
def add_canvas_3d(
    self,
    row: int,
    col: int,
    rowspan: int = 1,
    colspan: int = 1,
    *,
    palette: str | None = None,
):
    """Add a canvas to the grid at the given position"""
    from whitecanvas.canvas.canvas3d._base import Canvas3D

    for idx, item in np.ndenumerate(self._canvas_array[row, col]):
        if item is not None:
            raise ValueError(f"Canvas already exists at {idx}")
    backend_canvas = self._backend_object._plt_add_canvas_3d(
        row, col, rowspan, colspan
    )
    canvas = self._canvas_array[row, col] = Canvas3D.from_backend(
        backend_canvas,
        backend=self._backend,
        palette=palette,
    )
    # Now backend axes/viewbox are created, we can install mouse events
    # canvas._install_mouse_events()

    # link axes if needed
    if self._x_linked:
        self._x_linker_ref.link(canvas.x)
    if self._y_linked:
        self._y_linker_ref.link(canvas.y)
    canvas.events.drawn.connect(self.events.drawn.emit, unique=True, max_args=None)
    return canvas
copy(backend=None)

Make a copy of the canvas.

Source code in whitecanvas\canvas\_grid.py
359
360
361
362
363
def copy(self, backend: Backend | str | None = None) -> Self:
    """Make a copy of the canvas."""
    if backend is None:
        backend = self._backend
    return self.from_dict(self.to_dict(), backend=backend)
fill(palette=None)

Fill the grid with canvases.

Source code in whitecanvas\canvas\_grid.py
197
198
199
200
201
def fill(self, palette: ColormapType | None = None) -> Self:
    """Fill the grid with canvases."""
    for _ in self._iter_add_canvas(palette=palette):
        pass
    return self

Link all the x-axes of the canvases in the grid.

from whitecanvas import new_grid g = new_grid(2, 2).link_x() # link x-axes of all canvases

Parameters:

Name Type Description Default
future bool

If Ture, all the canvases added in the future will also be linked. Only link the existing canvases if False.

True
Source code in whitecanvas\canvas\_grid.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def link_x(self, *, future: bool = True, hide_ticks: bool = True) -> Self:
    """
    Link all the x-axes of the canvases in the grid.

    >>> from whitecanvas import new_grid
    >>> g = new_grid(2, 2).link_x()  # link x-axes of all canvases

    Parameters
    ----------
    future : bool, default True
        If Ture, all the canvases added in the future will also be linked. Only link
        the existing canvases if False.
    """
    if self._x_linker_ref is not None:
        self._x_linker_ref.unlink_all()  # initialize linker
    to_link = []
    for (_r, _), _canvas in self._iter_canvas():
        to_link.append(_canvas.x)
        if hide_ticks and _r != self.shape[0] - 1:
            _canvas.x.ticks.visible = False
    self._x_linker_ref = link_axes(to_link)
    if future:
        self._x_linked = True
        if hide_ticks:
            self._backend_object._plt_set_spacings(6, 6)
    return self

Link all the y-axes of the canvases in the grid.

from whitecanvas import new_grid g = new_grid(2, 2).link_y() # link y-axes of all canvases

Parameters:

Name Type Description Default
future bool

If Ture, all the canvases added in the future will also be linked. Only link the existing canvases if False.

True
Source code in whitecanvas\canvas\_grid.py
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def link_y(self, *, future: bool = True, hide_ticks: bool = True) -> Self:
    """
    Link all the y-axes of the canvases in the grid.

    >>> from whitecanvas import new_grid
    >>> g = new_grid(2, 2).link_y()  # link y-axes of all canvases

    Parameters
    ----------
    future : bool, default True
        If Ture, all the canvases added in the future will also be linked. Only link
        the existing canvases if False.
    """
    if self._y_linker_ref is not None:
        self._y_linker_ref.unlink_all()
    to_link = []
    for (_, _c), _canvas in self._iter_canvas():
        to_link.append(_canvas.y)
        if hide_ticks and _c != 0:
            _canvas.y.ticks.visible = False
    self._y_linker_ref = link_axes(to_link)
    if future:
        self._y_linked = True
        if hide_ticks:
            self._backend_object._plt_set_spacings(6, 6)
    return self
screenshot()

Return a screenshot of the grid.

Source code in whitecanvas\canvas\_grid.py
311
312
313
def screenshot(self) -> NDArray[np.uint8]:
    """Return a screenshot of the grid."""
    return self._backend_object._plt_screenshot()
show(block=False)

Show the grid.

Source code in whitecanvas\canvas\_grid.py
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def show(self, block=False) -> None:
    """Show the grid."""
    from whitecanvas.backend._app import get_app

    # TODO: implement other event loops
    app = get_app(self._backend._app)
    _backend_app = app.get_app()
    out = self._backend_object._plt_show()

    if out is NotImplemented:
        from whitecanvas.backend._window import view

        view(self, self._backend.app)

    if block:
        # TODO: automatically block the event loop or enable ipython
        # GUI mode if needed.
        app.run_app()
to_html(file=None)

Return HTML representation of the grid.

Source code in whitecanvas\canvas\_grid.py
397
398
399
400
401
402
def to_html(self, file: str | None = None) -> str:
    """Return HTML representation of the grid."""
    html = self._backend.get("to_html")(self._backend_object)
    if file is not None:
        Path(file).write_text(html, encoding="utf-8")
    return html

JointGrid

Grid with a main (joint) canvas and two marginal canvases.

The marginal canvases shares the x-axis and y-axis with the main canvas.

Source code in whitecanvas\canvas\_joint.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
class JointGrid(CanvasGrid):
    """
    Grid with a main (joint) canvas and two marginal canvases.

    The marginal canvases shares the x-axis and y-axis with the main canvas.
    """

    def __init__(
        self,
        loc: tuple[_0_or_1, _0_or_1] = (1, 0),
        palette: str | ColormapType | None = None,
        ratio: int = 4,
        backend: Backend | str | None = None,
    ):
        widths = [1, 1]
        heights = [1, 1]
        rloc, cloc = loc
        if rloc not in (0, 1) or cloc not in (0, 1):
            raise ValueError(f"Invalid location {loc!r}.")
        widths[rloc] = heights[cloc] = ratio
        super().__init__(widths, heights, backend=Backend(backend))
        self._loc = loc
        self._ratio = ratio
        self._main_canvas = self.add_canvas(rloc, cloc, palette=palette)
        self._x_canvas = self.add_canvas(1 - rloc, cloc)
        self._y_canvas = self.add_canvas(rloc, 1 - cloc)

        # flip the axes if needed
        if rloc == 0:
            self._x_canvas.y.flipped = True
            self._x_namespace_canvas = self._x_canvas
            self._main_canvas.x.ticks.visible = False
            self._title_namespace_canvas = self._main_canvas
        else:
            self._x_namespace_canvas = self._main_canvas
            self._x_canvas.x.ticks.visible = False
            self._title_namespace_canvas = self._x_canvas
        if cloc == 0:
            self._ynamespace_canvas = self._main_canvas
            self._y_canvas.y.ticks.visible = False
        else:
            self._y_canvas.x.flipped = True
            self._ynamespace_canvas = self._y_canvas
            self._main_canvas.y.ticks.visible = False

        self._backend_object._plt_set_spacings(10, 10)

        # link axes
        self._x_linker = link_axes([self._main_canvas.x, self._x_canvas.x])
        self._y_linker = link_axes([self._main_canvas.y, self._y_canvas.y])

        # joint plotter
        self._x_plotters: list[MarginalPlotter] = []
        self._y_plotters: list[MarginalPlotter] = []

    def _iter_x_plotters(self) -> Iterator[MarginalPlotter]:
        if len(self._x_plotters) == 0:
            yield MarginalHistPlotter(Orientation.VERTICAL)
        else:
            yield from self._x_plotters

    def _iter_y_plotters(self) -> Iterator[MarginalPlotter]:
        if len(self._y_plotters) == 0:
            yield MarginalHistPlotter(Orientation.HORIZONTAL)
        else:
            yield from self._y_plotters

    @property
    def x_canvas(self) -> Canvas:
        """The canvas at the x-axis."""
        return self._x_canvas

    @property
    def y_canvas(self) -> Canvas:
        """The canvas at the y-axis."""
        return self._y_canvas

    @property
    def main_canvas(self) -> Canvas:
        """The main (joint) canvas."""
        return self._main_canvas

    @property
    def x(self) -> _ns.XAxisNamespace:
        """The x-axis namespace of the joint grid."""
        return self._x_namespace_canvas.x

    @property
    def y(self) -> _ns.YAxisNamespace:
        """The y-axis namespace of the joint grid."""
        return self._ynamespace_canvas.y

    @property
    def title(self) -> _ns.TitleNamespace:
        """Title namespace of the joint grid."""
        return self._title_namespace_canvas.title

    def cat(
        self,
        data: _DF,
        x: str | None = None,
        y: str | None = None,
        *,
        update_labels: bool = True,
    ) -> JointCatPlotter[Self, _DF]:
        """Create a joint categorical canvas."""
        from whitecanvas.canvas.dataframe import JointCatPlotter

        return JointCatPlotter(self, data, x, y, update_labels=update_labels)

    @classmethod
    def from_dict(cls, d: dict[str, Any], backend: Backend | str | None = None) -> Self:
        _type_expected = f"{cls.__module__}.{cls.__name__}"
        if (_type := d.get("type")) and _type != _type_expected:
            raise ValueError(f"Expected type {_type_expected!r}, got {_type!r}")
        self = cls(
            loc=d.get("loc", (1, 0)),
            palette=d.get("palette", None),
            ratio=d.get("ratio", 4),
            backend=backend,
        )
        if "size" in d:
            self.size = d["size"]
        if "background_color" in d:
            self.background_color = d["background_color"]
        for canvas_dict in d["canvas_array"]:
            canvas = self[canvas_dict["row"], canvas_dict["col"]]
            canvas._update_from_dict(canvas_dict["canvas"])
        return self

    def to_dict(self) -> dict[str, Any]:
        return {
            "type": f"{self.__module__}.{self.__class__.__name__}",
            "loc": self._loc,
            "ratio": self._ratio,
            "palette": self._main_canvas._color_palette,
            "size": self.size,
            "background_color": Color(self.background_color).hex,
            "canvas_array": [
                {"row": r, "col": c, "canvas": canvas.to_dict()}
                for (r, c), canvas in self._iter_canvas()
            ],
        }

    def _link_marginal_to_main(self, layer: _l.Layer, main: _l.Layer) -> None:
        # TODO: this is not the only thing to be done
        main.events.visible.connect_setattr(layer, "visible", maxargs=1)

    def add_legend(
        self,
        layers: Sequence[str | _l.Layer] | None = None,
        *,
        location: Location | LocationStr = "top_right",
        title: str | None = None,
        name_filter: Callable[[str], bool] = not_starts_with_underscore,
    ):
        """Add legend to the main canvas."""
        return self.main_canvas.add_legend(
            layers, location=location, title=title, name_filter=name_filter
        )

    def add_markers(
        self,
        xdata: ArrayLike1D,
        ydata: ArrayLike1D,
        *,
        name: str | None = None,
        symbol: Symbol | str | None = None,
        size: float | None = None,
        color: ColorType | None = None,
        alpha: float = 1.0,
        hatch: str | Hatch | None = None,
    ) -> _l.Markers[_mixin.ConstFace, _mixin.ConstEdge, float]:
        color = self._main_canvas._generate_colors(color)
        out = self._main_canvas.add_markers(
            xdata, ydata, name=name, symbol=symbol, size=size, color=color,
            alpha=alpha, hatch=hatch,
        )  # fmt: skip
        for _x_plt in self._iter_x_plotters():
            xlayer = _x_plt.add_layer_for_markers(
                xdata, color, hatch, backend=self._backend
            )
            self.x_canvas.add_layer(xlayer)
            self._link_marginal_to_main(xlayer, out)
        for _y_plt in self._iter_y_plotters():
            ylayer = _y_plt.add_layer_for_markers(
                ydata, color, hatch, backend=self._backend
            )
            self.y_canvas.add_layer(ylayer)
            self._link_marginal_to_main(ylayer, out)
        self._autoscale_layers()
        return out

    def with_hist_x(
        self,
        *,
        bins: HistBinType = "auto",
        limits: tuple[float, float] | None = None,
        kind: str | HistogramKind = HistogramKind.density,
        shape: str | HistogramShape = HistogramShape.bars,
    ) -> Self:
        """
        Configure the x-marginal canvas to have a histogram.

        Parameters
        ----------
        bins : int or 1D array-like, default "auto"
            Bins of the histogram. This parameter will directly be passed
            to `np.histogram`.
        limits : (float, float), optional
            Limits in which histogram will be built. This parameter will equivalent to
            the `range` paraneter of `np.histogram`.
        shape : {"step", "polygon", "bars"}, default "bars"
            Shape of the histogram. This parameter defines how to convert the data into
            the line nodes.
        kind : {"count", "density", "probability", "frequency", "percent"}, optional
            Kind of the histogram.
        """
        self._x_plotters.append(
            MarginalHistPlotter(
                Orientation.VERTICAL, bins=bins, limits=limits, kind=kind, shape=shape
            )
        )
        return self

    def with_hist_y(
        self,
        *,
        bins: HistBinType = "auto",
        limits: tuple[float, float] | None = None,
        kind: str | HistogramKind = HistogramKind.density,
        shape: str | HistogramShape = HistogramShape.bars,
    ) -> Self:
        """
        Configure the y-marginal canvas to have a histogram.

        Parameters
        ----------
        bins : int or 1D array-like, default "auto"
            Bins of the histogram. This parameter will directly be passed
            to `np.histogram`.
        limits : (float, float), optional
            Limits in which histogram will be built. This parameter will equivalent to
            the `range` paraneter of `np.histogram`.
        shape : {"step", "polygon", "bars"}, default "bars"
            Shape of the histogram. This parameter defines how to convert the data into
            the line nodes.
        kind : {"count", "density", "probability", "frequency", "percent"}, optional
            Kind of the histogram.
        """
        self._y_plotters.append(
            MarginalHistPlotter(
                Orientation.HORIZONTAL, bins=bins, limits=limits, kind=kind, shape=shape
            )
        )
        return self

    def with_hist(
        self,
        *,
        bins: HistBinType | tuple[HistBinType, HistBinType] = "auto",
        limits: tuple[float, float] | None = None,
        kind: str | HistogramKind = HistogramKind.density,
        shape: str | HistogramShape = HistogramShape.bars,
    ) -> Self:
        """
        Configure both of the marginal canvases to have histograms.

        Parameters
        ----------
        bins : int or 1D array-like, default "auto"
            Bins of the histogram. This parameter will directly be passed
            to `np.histogram`.
        limits : (float, float), optional
            Limits in which histogram will be built. This parameter will equivalent to
            the `range` paraneter of `np.histogram`.
        shape : {"step", "polygon", "bars"}, default "bars"
            Shape of the histogram. This parameter defines how to convert the data into
            the line nodes.
        kind : {"count", "density", "probability", "frequency", "percent"}, optional
            Kind of the histogram.
        """
        if isinstance(bins, tuple):
            bins_x, bins_y = bins
        else:
            bins_x = bins_y = bins
        self.with_hist_x(bins=bins_x, limits=limits, kind=kind, shape=shape)
        self.with_hist_y(bins=bins_y, limits=limits, kind=kind, shape=shape)
        return self

    def with_kde_x(
        self,
        *,
        width: float | None = None,
        band_width: KdeBandWidthType = "scott",
        fill_alpha: float = 0.2,
    ) -> Self:
        """
        Configure the x-marginal canvas to have a kernel density estimate (KDE) plot.

        Parameters
        ----------
        width : float, optional
            Width of the line. Use theme default if not specified.
        band_width : "scott", "silverman" or float, default "scott"
            Bandwidth of the kernel.
        fill_alpha : float, default 0.2
            Alpha value of the fill color.
        """
        width = theme._default("line.width", width)
        self._x_plotters.append(
            MarginalKdePlotter(
                Orientation.VERTICAL,
                width=width,
                band_width=band_width,
                fill_alpha=fill_alpha,
            )
        )
        return self

    def with_kde_y(
        self,
        *,
        width: float | None = None,
        band_width: KdeBandWidthType = "scott",
        fill_alpha: float = 0.2,
    ) -> Self:
        """
        Configure the y-marginal canvas to have a kernel density estimate (KDE) plot.

        Parameters
        ----------
        width : float, optional
            Width of the line. Use theme default if not specified.
        band_width : "scott", "silverman" or float, default "scott"
            Bandwidth of the kernel.
        fill_alpha : float, default 0.2
            Alpha value of the fill color.
        """
        width = theme._default("line.width", width)
        self._y_plotters.append(
            MarginalKdePlotter(
                Orientation.HORIZONTAL,
                width=width,
                band_width=band_width,
                fill_alpha=fill_alpha,
            )
        )
        return self

    def with_kde(
        self,
        *,
        width: float | None = None,
        band_width: KdeBandWidthType = "scott",
        fill_alpha: float = 0.2,
    ) -> Self:
        """
        Configure both of the marginal canvases to have KDE plots.

        Parameters
        ----------
        width : float, optional
            Width of the line. Use theme default if not specified.
        band_width : "scott", "silverman" or float, default "scott"
            Bandwidth of the kernel.
        fill_alpha : float, default 0.2
            Alpha value of the fill color.
        """
        self.with_kde_x(width=width, band_width=band_width, fill_alpha=fill_alpha)
        self.with_kde_y(width=width, band_width=band_width, fill_alpha=fill_alpha)
        return self

    def with_rug_x(self, *, width: float | None = None) -> Self:
        """
        Configure the x-marginal canvas to have a rug plot.

        Parameters
        ----------
        width : float, optional
            Width of the line. Use theme default if not specified.
        """
        width = theme._default("line.width", width)
        self._x_plotters.append(MarginalRugPlotter(Orientation.VERTICAL, width=width))
        return self

    def with_rug_y(self, *, width: float | None = None) -> Self:
        """
        Configure the y-marginal canvas to have a rug plot.

        Parameters
        ----------
        width : float, optional
            Width of the line. Use theme default if not specified.
        """
        width = theme._default("line.width", width)
        self._y_plotters.append(MarginalRugPlotter(Orientation.HORIZONTAL, width=width))
        return self

    def with_rug(self, *, width: float | None = None) -> Self:
        """
        Configure both of the marginal canvases to have rug plots.

        Parameters
        ----------
        width : float, optional
            Width of the line. Use theme default if not specified.
        """
        self.with_rug_x(width=width)
        self.with_rug_y(width=width)
        return self

    def _autoscale_layers(self):
        for layer in self.x_canvas.layers:
            if isinstance(layer, (_l.Rug, _lt.DFRug)):
                ylow, yhigh = self.x_canvas.y.lim
                layer.update_length((yhigh - ylow) * 0.1)
        for layer in self.y_canvas.layers:
            if isinstance(layer, (_l.Rug, _lt.DFRug)):
                xlow, xhigh = self.y_canvas.x.lim
                layer.update_length((xhigh - xlow) * 0.1)
main_canvas: Canvas property

The main (joint) canvas.

title: _ns.TitleNamespace property

Title namespace of the joint grid.

x: _ns.XAxisNamespace property

The x-axis namespace of the joint grid.

x_canvas: Canvas property

The canvas at the x-axis.

y: _ns.YAxisNamespace property

The y-axis namespace of the joint grid.

y_canvas: Canvas property

The canvas at the y-axis.

add_legend(layers=None, *, location='top_right', title=None, name_filter=not_starts_with_underscore)

Add legend to the main canvas.

Source code in whitecanvas\canvas\_joint.py
205
206
207
208
209
210
211
212
213
214
215
216
def add_legend(
    self,
    layers: Sequence[str | _l.Layer] | None = None,
    *,
    location: Location | LocationStr = "top_right",
    title: str | None = None,
    name_filter: Callable[[str], bool] = not_starts_with_underscore,
):
    """Add legend to the main canvas."""
    return self.main_canvas.add_legend(
        layers, location=location, title=title, name_filter=name_filter
    )
cat(data, x=None, y=None, *, update_labels=True)

Create a joint categorical canvas.

Source code in whitecanvas\canvas\_joint.py
154
155
156
157
158
159
160
161
162
163
164
165
def cat(
    self,
    data: _DF,
    x: str | None = None,
    y: str | None = None,
    *,
    update_labels: bool = True,
) -> JointCatPlotter[Self, _DF]:
    """Create a joint categorical canvas."""
    from whitecanvas.canvas.dataframe import JointCatPlotter

    return JointCatPlotter(self, data, x, y, update_labels=update_labels)
with_hist(*, bins='auto', limits=None, kind=HistogramKind.density, shape=HistogramShape.bars)

Configure both of the marginal canvases to have histograms.

Parameters:

Name Type Description Default
bins int or 1D array-like

Bins of the histogram. This parameter will directly be passed to np.histogram.

"auto"
limits (float, float)

Limits in which histogram will be built. This parameter will equivalent to the range paraneter of np.histogram.

None
shape ('step', 'polygon', 'bars')

Shape of the histogram. This parameter defines how to convert the data into the line nodes.

"step"
kind ('count', 'density', 'probability', 'frequency', 'percent')

Kind of the histogram.

"count"
Source code in whitecanvas\canvas\_joint.py
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
def with_hist(
    self,
    *,
    bins: HistBinType | tuple[HistBinType, HistBinType] = "auto",
    limits: tuple[float, float] | None = None,
    kind: str | HistogramKind = HistogramKind.density,
    shape: str | HistogramShape = HistogramShape.bars,
) -> Self:
    """
    Configure both of the marginal canvases to have histograms.

    Parameters
    ----------
    bins : int or 1D array-like, default "auto"
        Bins of the histogram. This parameter will directly be passed
        to `np.histogram`.
    limits : (float, float), optional
        Limits in which histogram will be built. This parameter will equivalent to
        the `range` paraneter of `np.histogram`.
    shape : {"step", "polygon", "bars"}, default "bars"
        Shape of the histogram. This parameter defines how to convert the data into
        the line nodes.
    kind : {"count", "density", "probability", "frequency", "percent"}, optional
        Kind of the histogram.
    """
    if isinstance(bins, tuple):
        bins_x, bins_y = bins
    else:
        bins_x = bins_y = bins
    self.with_hist_x(bins=bins_x, limits=limits, kind=kind, shape=shape)
    self.with_hist_y(bins=bins_y, limits=limits, kind=kind, shape=shape)
    return self
with_hist_x(*, bins='auto', limits=None, kind=HistogramKind.density, shape=HistogramShape.bars)

Configure the x-marginal canvas to have a histogram.

Parameters:

Name Type Description Default
bins int or 1D array-like

Bins of the histogram. This parameter will directly be passed to np.histogram.

"auto"
limits (float, float)

Limits in which histogram will be built. This parameter will equivalent to the range paraneter of np.histogram.

None
shape ('step', 'polygon', 'bars')

Shape of the histogram. This parameter defines how to convert the data into the line nodes.

"step"
kind ('count', 'density', 'probability', 'frequency', 'percent')

Kind of the histogram.

"count"
Source code in whitecanvas\canvas\_joint.py
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
def with_hist_x(
    self,
    *,
    bins: HistBinType = "auto",
    limits: tuple[float, float] | None = None,
    kind: str | HistogramKind = HistogramKind.density,
    shape: str | HistogramShape = HistogramShape.bars,
) -> Self:
    """
    Configure the x-marginal canvas to have a histogram.

    Parameters
    ----------
    bins : int or 1D array-like, default "auto"
        Bins of the histogram. This parameter will directly be passed
        to `np.histogram`.
    limits : (float, float), optional
        Limits in which histogram will be built. This parameter will equivalent to
        the `range` paraneter of `np.histogram`.
    shape : {"step", "polygon", "bars"}, default "bars"
        Shape of the histogram. This parameter defines how to convert the data into
        the line nodes.
    kind : {"count", "density", "probability", "frequency", "percent"}, optional
        Kind of the histogram.
    """
    self._x_plotters.append(
        MarginalHistPlotter(
            Orientation.VERTICAL, bins=bins, limits=limits, kind=kind, shape=shape
        )
    )
    return self
with_hist_y(*, bins='auto', limits=None, kind=HistogramKind.density, shape=HistogramShape.bars)

Configure the y-marginal canvas to have a histogram.

Parameters:

Name Type Description Default
bins int or 1D array-like

Bins of the histogram. This parameter will directly be passed to np.histogram.

"auto"
limits (float, float)

Limits in which histogram will be built. This parameter will equivalent to the range paraneter of np.histogram.

None
shape ('step', 'polygon', 'bars')

Shape of the histogram. This parameter defines how to convert the data into the line nodes.

"step"
kind ('count', 'density', 'probability', 'frequency', 'percent')

Kind of the histogram.

"count"
Source code in whitecanvas\canvas\_joint.py
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def with_hist_y(
    self,
    *,
    bins: HistBinType = "auto",
    limits: tuple[float, float] | None = None,
    kind: str | HistogramKind = HistogramKind.density,
    shape: str | HistogramShape = HistogramShape.bars,
) -> Self:
    """
    Configure the y-marginal canvas to have a histogram.

    Parameters
    ----------
    bins : int or 1D array-like, default "auto"
        Bins of the histogram. This parameter will directly be passed
        to `np.histogram`.
    limits : (float, float), optional
        Limits in which histogram will be built. This parameter will equivalent to
        the `range` paraneter of `np.histogram`.
    shape : {"step", "polygon", "bars"}, default "bars"
        Shape of the histogram. This parameter defines how to convert the data into
        the line nodes.
    kind : {"count", "density", "probability", "frequency", "percent"}, optional
        Kind of the histogram.
    """
    self._y_plotters.append(
        MarginalHistPlotter(
            Orientation.HORIZONTAL, bins=bins, limits=limits, kind=kind, shape=shape
        )
    )
    return self
with_kde(*, width=None, band_width='scott', fill_alpha=0.2)

Configure both of the marginal canvases to have KDE plots.

Parameters:

Name Type Description Default
width float

Width of the line. Use theme default if not specified.

None
band_width ('scott', 'silverman' or float)

Bandwidth of the kernel.

"scott"
fill_alpha float

Alpha value of the fill color.

0.2
Source code in whitecanvas\canvas\_joint.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
def with_kde(
    self,
    *,
    width: float | None = None,
    band_width: KdeBandWidthType = "scott",
    fill_alpha: float = 0.2,
) -> Self:
    """
    Configure both of the marginal canvases to have KDE plots.

    Parameters
    ----------
    width : float, optional
        Width of the line. Use theme default if not specified.
    band_width : "scott", "silverman" or float, default "scott"
        Bandwidth of the kernel.
    fill_alpha : float, default 0.2
        Alpha value of the fill color.
    """
    self.with_kde_x(width=width, band_width=band_width, fill_alpha=fill_alpha)
    self.with_kde_y(width=width, band_width=band_width, fill_alpha=fill_alpha)
    return self
with_kde_x(*, width=None, band_width='scott', fill_alpha=0.2)

Configure the x-marginal canvas to have a kernel density estimate (KDE) plot.

Parameters:

Name Type Description Default
width float

Width of the line. Use theme default if not specified.

None
band_width ('scott', 'silverman' or float)

Bandwidth of the kernel.

"scott"
fill_alpha float

Alpha value of the fill color.

0.2
Source code in whitecanvas\canvas\_joint.py
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
def with_kde_x(
    self,
    *,
    width: float | None = None,
    band_width: KdeBandWidthType = "scott",
    fill_alpha: float = 0.2,
) -> Self:
    """
    Configure the x-marginal canvas to have a kernel density estimate (KDE) plot.

    Parameters
    ----------
    width : float, optional
        Width of the line. Use theme default if not specified.
    band_width : "scott", "silverman" or float, default "scott"
        Bandwidth of the kernel.
    fill_alpha : float, default 0.2
        Alpha value of the fill color.
    """
    width = theme._default("line.width", width)
    self._x_plotters.append(
        MarginalKdePlotter(
            Orientation.VERTICAL,
            width=width,
            band_width=band_width,
            fill_alpha=fill_alpha,
        )
    )
    return self
with_kde_y(*, width=None, band_width='scott', fill_alpha=0.2)

Configure the y-marginal canvas to have a kernel density estimate (KDE) plot.

Parameters:

Name Type Description Default
width float

Width of the line. Use theme default if not specified.

None
band_width ('scott', 'silverman' or float)

Bandwidth of the kernel.

"scott"
fill_alpha float

Alpha value of the fill color.

0.2
Source code in whitecanvas\canvas\_joint.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def with_kde_y(
    self,
    *,
    width: float | None = None,
    band_width: KdeBandWidthType = "scott",
    fill_alpha: float = 0.2,
) -> Self:
    """
    Configure the y-marginal canvas to have a kernel density estimate (KDE) plot.

    Parameters
    ----------
    width : float, optional
        Width of the line. Use theme default if not specified.
    band_width : "scott", "silverman" or float, default "scott"
        Bandwidth of the kernel.
    fill_alpha : float, default 0.2
        Alpha value of the fill color.
    """
    width = theme._default("line.width", width)
    self._y_plotters.append(
        MarginalKdePlotter(
            Orientation.HORIZONTAL,
            width=width,
            band_width=band_width,
            fill_alpha=fill_alpha,
        )
    )
    return self
with_rug(*, width=None)

Configure both of the marginal canvases to have rug plots.

Parameters:

Name Type Description Default
width float

Width of the line. Use theme default if not specified.

None
Source code in whitecanvas\canvas\_joint.py
456
457
458
459
460
461
462
463
464
465
466
467
def with_rug(self, *, width: float | None = None) -> Self:
    """
    Configure both of the marginal canvases to have rug plots.

    Parameters
    ----------
    width : float, optional
        Width of the line. Use theme default if not specified.
    """
    self.with_rug_x(width=width)
    self.with_rug_y(width=width)
    return self
with_rug_x(*, width=None)

Configure the x-marginal canvas to have a rug plot.

Parameters:

Name Type Description Default
width float

Width of the line. Use theme default if not specified.

None
Source code in whitecanvas\canvas\_joint.py
430
431
432
433
434
435
436
437
438
439
440
441
def with_rug_x(self, *, width: float | None = None) -> Self:
    """
    Configure the x-marginal canvas to have a rug plot.

    Parameters
    ----------
    width : float, optional
        Width of the line. Use theme default if not specified.
    """
    width = theme._default("line.width", width)
    self._x_plotters.append(MarginalRugPlotter(Orientation.VERTICAL, width=width))
    return self
with_rug_y(*, width=None)

Configure the y-marginal canvas to have a rug plot.

Parameters:

Name Type Description Default
width float

Width of the line. Use theme default if not specified.

None
Source code in whitecanvas\canvas\_joint.py
443
444
445
446
447
448
449
450
451
452
453
454
def with_rug_y(self, *, width: float | None = None) -> Self:
    """
    Configure the y-marginal canvas to have a rug plot.

    Parameters
    ----------
    width : float, optional
        Width of the line. Use theme default if not specified.
    """
    width = theme._default("line.width", width)
    self._y_plotters.append(MarginalRugPlotter(Orientation.HORIZONTAL, width=width))
    return self

SingleCanvas

A canvas without other subplots.

This class is the simplest form of canvas. In matplotlib terms, it is a figure with a single axes.

Source code in whitecanvas\canvas\_grid.py
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
class SingleCanvas(_CanvasWithGrid, _Serializable):
    """
    A canvas without other subplots.

    This class is the simplest form of canvas. In `matplotlib` terms, it is a figure
    with a single axes.
    """

    def __init__(self, canvas: Canvas, grid: CanvasGrid):
        super().__init__(canvas, grid)

        # NOTE: events, dims etc are not shared between the main canvas and the
        # SingleCanvas instance. To avoid confusion, the first and the only canvas
        # should be replaces with the SingleCanvas instance.
        self.mouse = grid[0, 0].mouse
        grid._canvas_array[0, 0] = self
        self.events.drawn.connect(
            self._main_canvas.events.drawn.emit, unique=True, max_args=None
        )

    @classmethod
    def _new(cls, palette=None, backend=None) -> SingleCanvas:
        _grid = CanvasGrid([1], [1], backend=backend)
        _grid.add_canvas(0, 0, palette=palette)
        return SingleCanvas._from_grid(_grid)

    @classmethod
    def _from_grid(cls, grid: CanvasGrid) -> SingleCanvas:
        if grid.shape != (1, 1):
            raise ValueError(f"Grid shape must be (1, 1), got {grid.shape}")
        _it = grid._iter_canvas()
        _, canvas = next(_it)
        if next(_it, None) is not None:
            raise ValueError("Grid must have only one canvas")
        return cls(canvas, grid)

    @classmethod
    def from_dict(cls, d: dict[str, Any], backend: Backend | str | None = None) -> Self:
        """Create a SingleCanvas instance from a dictionary."""
        _type_expected = f"{cls.__module__}.{cls.__name__}"
        if (_type := d.get("type")) and _type != _type_expected:
            raise ValueError(f"Expected type {_type_expected!r}, got {_type!r}")
        self = cls._new(backend=backend, palette=d.get("palette"))
        self.layers.clear()
        self.layers.extend(construct_layers(d["layers"], backend=backend))
        self.x.update(d.get("x", {}))
        self.y.update(d.get("y", {}))
        self.title.update(d.get("title", {}))
        return self

    def to_dict(self) -> dict[str, Any]:
        """Return a dictionary representation of the canvas."""
        return {
            "type": f"{self.__module__}.{self.__class__.__name__}",
            "palette": self._color_palette,
            "layers": [layer.to_dict() for layer in self.layers],
            "title": self.title.to_dict(),
            "x": self.x.to_dict(),
            "y": self.y.to_dict(),
        }

    def copy(self, backend: Backend | str | None = None) -> Self:
        """Make a copy of the canvas."""
        if backend is None:
            backend = self._main_canvas._backend
        return self.from_dict(self.to_dict(), backend=backend)
copy(backend=None)

Make a copy of the canvas.

Source code in whitecanvas\canvas\_grid.py
582
583
584
585
586
def copy(self, backend: Backend | str | None = None) -> Self:
    """Make a copy of the canvas."""
    if backend is None:
        backend = self._main_canvas._backend
    return self.from_dict(self.to_dict(), backend=backend)
from_dict(d, backend=None) classmethod

Create a SingleCanvas instance from a dictionary.

Source code in whitecanvas\canvas\_grid.py
557
558
559
560
561
562
563
564
565
566
567
568
569
@classmethod
def from_dict(cls, d: dict[str, Any], backend: Backend | str | None = None) -> Self:
    """Create a SingleCanvas instance from a dictionary."""
    _type_expected = f"{cls.__module__}.{cls.__name__}"
    if (_type := d.get("type")) and _type != _type_expected:
        raise ValueError(f"Expected type {_type_expected!r}, got {_type!r}")
    self = cls._new(backend=backend, palette=d.get("palette"))
    self.layers.clear()
    self.layers.extend(construct_layers(d["layers"], backend=backend))
    self.x.update(d.get("x", {}))
    self.y.update(d.get("y", {}))
    self.title.update(d.get("title", {}))
    return self
to_dict()

Return a dictionary representation of the canvas.

Source code in whitecanvas\canvas\_grid.py
571
572
573
574
575
576
577
578
579
580
def to_dict(self) -> dict[str, Any]:
    """Return a dictionary representation of the canvas."""
    return {
        "type": f"{self.__module__}.{self.__class__.__name__}",
        "palette": self._color_palette,
        "layers": [layer.to_dict() for layer in self.layers],
        "title": self.title.to_dict(),
        "x": self.x.to_dict(),
        "y": self.y.to_dict(),
    }

Link multiple axes.

Source code in whitecanvas\canvas\_linker.py
95
96
97
98
def link_axes(*axes: AxisNamespace):
    """Link multiple axes."""
    linker = AxisLinker.link_axes(*axes)
    return AxisLinkerRef(linker)

AxisNamespace

Source code in whitecanvas\canvas\_namespaces.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
class AxisNamespace(Namespace):
    events: AxisSignals
    _attrs = ("lim", "color", "flipped")

    def __init__(self, canvas: CanvasBase | None = None):
        super().__init__(canvas)
        self.events = AxisSignals()
        self._flipped = False
        self._lim_updated_by_user = False

    def _get_object(self) -> protocols.AxisProtocol:
        raise NotImplementedError

    @property
    def lim(self) -> tuple[float, float]:
        """Limits of the axis."""
        return self._get_object()._plt_get_limits()

    @lim.setter
    def lim(self, lim: tuple[float, float]):
        low, high = lim
        if low is None or high is None:
            _low, _high = self._get_object()._plt_get_limits()
            low = low if low is not None else _low
            high = high if high is not None else _high
        elif low >= high:
            a = type(self).__name__[0].lower()
            raise ValueError(
                f"low must be less than high, but got {lim!r}. If you "
                f"want to flip the axis, use `canvas.{a}.flipped = True`."
            )
        self._unsafe_set_lim(low, high)
        self._draw_canvas()
        return None

    def _unsafe_set_lim(self, low: float, high: float):
        # Manually emit signal. This is needed when the plot backend is
        # implemented in JS (such as bokeh) and the python callback is not
        # enabled. Otherwise axis linking fails.
        with self.events.blocked():
            self._get_object()._plt_set_limits((low, high))
        self.events.lim.emit((low, high))
        self._lim_updated_by_user = True
        return None

    @property
    def color(self):
        """Color of the axis."""
        return self._get_object()._plt_get_color()

    @color.setter
    def color(self, color):
        self._get_object()._plt_set_color(np.fromiter(Color(color), dtype=np.float32))
        self._draw_canvas()

    @property
    def flipped(self) -> bool:
        """Return true if the axis is flipped."""
        return self._flipped

    @flipped.setter
    def flipped(self, flipped: bool):
        """Set the axis to be flipped."""
        if flipped != self._flipped:
            self._get_object()._plt_flip()
            self._flipped = flipped

    def set_gridlines(
        self,
        visible: bool = True,
        color: ColorType = "gray",
        width: float = 1.0,
        style: str | LineStyle = LineStyle.SOLID,
    ):
        color = arr_color(color)
        style = LineStyle(style)
        if width < 0:
            raise ValueError("width must be non-negative.")
        self._get_object()._plt_set_grid_state(visible, color, width, style)
color property writable

Color of the axis.

flipped: bool property writable

Return true if the axis is flipped.

lim: tuple[float, float] property writable

Limits of the axis.

AxisSignals

Signals emitted by an axis.

Source code in whitecanvas\canvas\_namespaces.py
40
41
42
43
class AxisSignals(SignalGroup):
    """Signals emitted by an axis."""

    lim = Signal(tuple)

MouseNamespace

Namespace that contains the mouse events.

Source code in whitecanvas\canvas\_namespaces.py
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
class MouseNamespace(Namespace):
    """Namespace that contains the mouse events."""

    clicked = MouseSignal(object)
    """Signal emitted when a mouse button is clicked."""

    moved = MouseMoveSignal()
    """Signal emitted when the mouse is moved."""

    double_clicked = MouseSignal(object)
    """Signal emitted when a mouse button is double-clicked."""

    @property
    def enabled(self) -> bool:
        """Return whether pan/zoom is enabled."""
        return self._get_canvas()._plt_get_mouse_enabled()

    @enabled.setter
    def enabled(self, enabled: bool):
        self._get_canvas()._plt_set_mouse_enabled(enabled)

    def emulate_click(
        self,
        position: tuple[float, float],
        *,
        button: str | MouseButton = MouseButton.LEFT,
        modifiers: str | Modifier | Sequence[str | Modifier] = (),
    ) -> None:
        """Emulate a mouse press event."""
        ev = MouseEvent(
            MouseButton(button),
            _norm_modifiers(modifiers),
            Point(*position),
            MouseEventType.PRESS,
        )
        self.clicked.emit(ev)
        return None

    def emulate_double_click(
        self,
        position: tuple[float, float],
        *,
        button: str | MouseButton = MouseButton.LEFT,
        modifiers: str | Modifier | Sequence[str | Modifier] = (),
    ) -> None:
        """Emulate a mouse double-click event."""
        ev = MouseEvent(
            MouseButton(button),
            _norm_modifiers(modifiers),
            Point(*position),
            MouseEventType.DOUBLE_CLICK,
        )
        self.double_clicked.emit(ev)

    def emulate_hover(
        self,
        positions: Sequence[tuple[float, float]],
        *,
        modifiers: str | Modifier | Sequence[str | Modifier] = (),
    ) -> None:
        """Emulate a mouse move event."""
        _modifiers = _norm_modifiers(modifiers)

        for pos in positions:
            ev = MouseEvent(
                MouseButton.NONE,
                _modifiers,
                Point(*pos),
                MouseEventType.MOVE,
            )
            self.moved.emit(ev)
        return None

    def emulate_drag(
        self,
        positions: Sequence[tuple[float, float]],
        *,
        button: str | MouseButton = MouseButton.LEFT,
        modifiers: str | Modifier | Sequence[str | Modifier] = (),
    ):
        """Emulate a mouse press-move-release event."""
        _modifiers = _norm_modifiers(modifiers)

        ev = MouseEvent(
            MouseButton(button),
            _modifiers,
            Point(*positions[0]),
            MouseEventType.PRESS,
        )
        self.moved.emit(ev)

        for pos in positions[1:]:
            ev = MouseEvent(
                MouseButton(button),
                _modifiers,
                Point(*pos),
                MouseEventType.MOVE,
            )
            self.moved.emit(ev)

        ev = MouseEvent(
            MouseButton(button),
            _modifiers,
            Point(*positions[-1]),
            MouseEventType.RELEASE,
        )
        self.moved.emit(ev)
        return None
clicked = MouseSignal(object) class-attribute instance-attribute

Signal emitted when a mouse button is clicked.

double_clicked = MouseSignal(object) class-attribute instance-attribute

Signal emitted when a mouse button is double-clicked.

enabled: bool property writable

Return whether pan/zoom is enabled.

moved = MouseMoveSignal() class-attribute instance-attribute

Signal emitted when the mouse is moved.

emulate_click(position, *, button=MouseButton.LEFT, modifiers=())

Emulate a mouse press event.

Source code in whitecanvas\canvas\_namespaces.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def emulate_click(
    self,
    position: tuple[float, float],
    *,
    button: str | MouseButton = MouseButton.LEFT,
    modifiers: str | Modifier | Sequence[str | Modifier] = (),
) -> None:
    """Emulate a mouse press event."""
    ev = MouseEvent(
        MouseButton(button),
        _norm_modifiers(modifiers),
        Point(*position),
        MouseEventType.PRESS,
    )
    self.clicked.emit(ev)
    return None
emulate_double_click(position, *, button=MouseButton.LEFT, modifiers=())

Emulate a mouse double-click event.

Source code in whitecanvas\canvas\_namespaces.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def emulate_double_click(
    self,
    position: tuple[float, float],
    *,
    button: str | MouseButton = MouseButton.LEFT,
    modifiers: str | Modifier | Sequence[str | Modifier] = (),
) -> None:
    """Emulate a mouse double-click event."""
    ev = MouseEvent(
        MouseButton(button),
        _norm_modifiers(modifiers),
        Point(*position),
        MouseEventType.DOUBLE_CLICK,
    )
    self.double_clicked.emit(ev)
emulate_drag(positions, *, button=MouseButton.LEFT, modifiers=())

Emulate a mouse press-move-release event.

Source code in whitecanvas\canvas\_namespaces.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
def emulate_drag(
    self,
    positions: Sequence[tuple[float, float]],
    *,
    button: str | MouseButton = MouseButton.LEFT,
    modifiers: str | Modifier | Sequence[str | Modifier] = (),
):
    """Emulate a mouse press-move-release event."""
    _modifiers = _norm_modifiers(modifiers)

    ev = MouseEvent(
        MouseButton(button),
        _modifiers,
        Point(*positions[0]),
        MouseEventType.PRESS,
    )
    self.moved.emit(ev)

    for pos in positions[1:]:
        ev = MouseEvent(
            MouseButton(button),
            _modifiers,
            Point(*pos),
            MouseEventType.MOVE,
        )
        self.moved.emit(ev)

    ev = MouseEvent(
        MouseButton(button),
        _modifiers,
        Point(*positions[-1]),
        MouseEventType.RELEASE,
    )
    self.moved.emit(ev)
    return None
emulate_hover(positions, *, modifiers=())

Emulate a mouse move event.

Source code in whitecanvas\canvas\_namespaces.py
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
def emulate_hover(
    self,
    positions: Sequence[tuple[float, float]],
    *,
    modifiers: str | Modifier | Sequence[str | Modifier] = (),
) -> None:
    """Emulate a mouse move event."""
    _modifiers = _norm_modifiers(modifiers)

    for pos in positions:
        ev = MouseEvent(
            MouseButton.NONE,
            _modifiers,
            Point(*pos),
            MouseEventType.MOVE,
        )
        self.moved.emit(ev)
    return None

Namespace

Source code in whitecanvas\canvas\_namespaces.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
class Namespace:
    _attrs: tuple[str, ...] = ()

    def __init__(self, canvas: CanvasBase | None = None):
        if canvas is not None:
            # This line *should* be an weak reference, but canvas is sometimes deleted
            # for some reason. Just use a strong reference for now.
            self._canvas_ref = _StrongRef(canvas)
        else:
            self._canvas_ref = _StrongRef(_no_canvas)
        self._instances: dict[int, Self] = {}

    def __get__(self, canvas, owner=None) -> Self:
        if canvas is None:
            return self
        while isinstance(canvas, Namespace):
            canvas = canvas._canvas_ref()
        id_ = id(canvas)
        if (ns := self._instances.get(id_)) is None:
            ns = self._instances[id_] = type(self)(canvas)
        return ns

    def _get_canvas(self) -> protocols.CanvasProtocol:
        l = self._canvas_ref()
        if l is None:
            raise ReferenceDeletedError("Canvas has been deleted.")
        elif l is _no_canvas:
            raise TypeError("No canvas is associated with the class itself.")
        return l._canvas()

    def _draw_canvas(self):
        if canvas := self._canvas_ref():
            canvas._draw_canvas()

    def __repr__(self) -> str:
        cname = type(self).__name__
        l = self._canvas_ref()
        if l is None:
            return f"<{cname} of deleted canvas>"
        elif l is _no_canvas:
            return f"<{cname}>"
        props = [f"canvas={l!r}"]
        for k in self._attrs:
            v = getattr(self, k)
            props.append(f"{k}={v!r}")
        return f"{cname}({', '.join(props)})"

    def update(self, d: dict[str, Any] = {}, **kwargs):
        values = dict(d, **kwargs)
        invalid_args = set(values) - set(self._attrs)
        if invalid_args:
            raise TypeError(f"Cannot set {invalid_args!r} on {type(self).__name__}")
        for k, v in values.items():
            if isinstance(ns := getattr(self, k), Namespace):
                ns.update(v)
            else:
                setattr(self, k, v)

    def to_dict(self) -> dict[str, Any]:
        """Return a dictionary representation of the namespace."""
        out = {}
        for k in self._attrs:
            val = getattr(self, k)
            if isinstance(val, Namespace):
                out[k] = val.to_dict()
            else:
                out[k] = val
        return out
to_dict()

Return a dictionary representation of the namespace.

Source code in whitecanvas\canvas\_namespaces.py
114
115
116
117
118
119
120
121
122
123
def to_dict(self) -> dict[str, Any]:
    """Return a dictionary representation of the namespace."""
    out = {}
    for k in self._attrs:
        val = getattr(self, k)
        if isinstance(val, Namespace):
            out[k] = val.to_dict()
        else:
            out[k] = val
    return out