Source code for acryo.testing._templates

from __future__ import annotations
import numpy as np
from numpy.typing import NDArray
from functools import lru_cache


def gaussian_blob(
    indices,
    center: tuple[float, float, float],
    sigma: float,
) -> NDArray[np.float32]:
    zz, yy, xx = indices
    return np.exp(
        -((zz - center[0]) ** 2 + (yy - center[1]) ** 2 + (xx - center[2]) ** 2)
        / sigma**2
        / 2
    )


[docs] def blobs() -> NDArray[np.float32]: shape = (40, 40, 40) centers = [(17, 17, 17), (17, 17, 26), (24, 17, 18)] sigmas = [5.4, 3.6, 2.7] img = np.zeros(shape, dtype=np.float32) inds = np.indices(shape, dtype=np.float32) for center, sigma in zip(centers, sigmas): img += gaussian_blob(inds, center, sigma) return img
@lru_cache(maxsize=2) def _cached_spiral( radius: float = 4.0, freq: float = 1.0, shape: tuple[int, int, int] = (40, 40, 40), ): shape = (40, 40, 40) img = np.zeros(shape, dtype=np.float32) inds = np.indices(shape, dtype=np.float32) ys = np.linspace(5, 35, 100) zs = radius * np.sin(ys * freq) + (shape[0] - 1) / 2 xs = radius * np.cos(ys * freq) + (shape[2] - 1) / 2 for center in np.stack([zs, ys, xs], axis=1): img += gaussian_blob(inds, center, 1.0) img /= img.max() return img
[docs] def spiral( radius: float = 4.0, freq: float = 1.0, shape: tuple[int, int, int] = (40, 40, 40), ) -> NDArray[np.float32]: return _cached_spiral(round(radius, 3), round(freq, 5), shape)